
Chapter �
Day �: Matrix Transformations

�.� Schedule

• ����-����: Debrief

• ����-����: Synthesis

• ����-����: �D Rotations

• ����-����: Co�ee

• ����-����: �D Rotations

• ����-����: Re�ections and Shearing

• ����-����: Review and Preview

• ����-����: Survey

�.� Debrief

• With your table-mates, identify a list of key concepts/take home messages/things you learned in the
assignment. Try to group them in categories like "Concepts", "Technical Details", "Matlab", etc.

• Try to resolve your confusions with your table-mates and by talking to an instructor.

�.� Synthesis

Exercise �.�
These are fundamental ideas about matrices and it is important to complete these. They should be
done by hand.

�. What is the di�erence between a scalar, a vector, a matrix, and an array?

�. What are the rules for adding matrices?

�. When can two matrices be multiplied, and what is the size of the output?

�. What is the distributive property for matrix multiplication?

�. What is the associative property for matrix multiplication?

�. What is the commutative property for matrix multiplication?
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Exercise �.�
These are synthesis problems. It would be helpful to complete these. They should be done by hand.

�. Consider the matrix A =


1 2
3 4

�
. Show that A2 commutes with A.

�. Use the distribution law to expand (A + B)2 assuming that A and B are matrices of appro-
priate size. How does this compare to the situation for real numbers?

�. Show that D =


4 �2
3 �3

�
satis�es the matrix equation D2 � D � 6I = 0.

Exercise �.�
These are challenge problems. Pick one of them to wrestle with. It is not important to complete
these. They should be done by hand.

�. The matrix exponential is de�ned by the power series

expA =
1X

k=0

Ak

k!

Assume A =


2 0
0 3

�
. Find a formula for expA.

�. The real number 0 has just one square root: 0. Show, however, that the 2 ⇥ 2 zero matrix has
in�nitely many square roots by �nding all 2 ⇥ 2 matrices A such that A2 = 0.

�. Use induction to prove that An commutes with A for any square matrix A and positive
integer n.

�.� �D Rotation Matrices

We’re going to think about how to use rotation matrices to rotate a geometrical object. In doing so we will
solidify fundamental concepts around matrix multiplication and start to explore the notion of “inverse”. For
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clarity we will �rst work in �D. Recall that the rotation matrix R(✓):

R(✓) =


cos ✓ � sin ✓
sin ✓ cos ✓

�

will rotate an object counterclockwise about the origin through an angle of ✓.

Exercise �.�
This is a hands-on, conceptual problem involving the multiplication of �D rotation matrices.

�. Place an object on your table, and imagine that the origin of an xy-coordinate system is at the
center of your object with +z pointing upwards.

�. Rotate it counterclockwise by �� degrees, and then again by another �� degrees. What is it’s
orientation now? How would you get there in one rotation instead? What does this suggest
about the multiplication of rotation matrices?

�. What happens if you �rst rotate it by �� degrees, and then by �� degrees? What does this
suggest about the commutative property of �D rotation matrices?

Exercise �.�
This is an algebra problem involving the multiplication of �D rotation matrices.

�. Use some algebra to show that �D rotation matrices commute, i.e. R(✓1)R(✓2) =
R(✓2)R(✓1).

�. Use some algebra to show that R(✓1)R(✓2) = R(✓1 + ✓2). You will need to look up some
trig identities.

Exercise �.�
Now, consider a rectangle of width � and height �, centered at the origin. For clarity, this means
that the corners of the rectangle have coordinates (1, 2), (�1, 2), (�1, �2), and (1, �2).

�. Plot these four points by hand and connect them with lines to complete the rectangle.

�. Now, using the appropriate rotation matrix, transform each of the corner points by a rotation
through �� degrees counterclockwise (recall that the sin and cos of �� degrees can be expressed
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exactly). Compute and plot the resulting points by hand and connect them with lines. Does
the resulting �gure look like you’d expect?

Exercise �.�
Now, let’s do it in MATLAB.

�. Create and plot the original � points:(1, 2), (�1, 2), (�1, �2), and (1, �2). Then create the
matrix that rotates them by �� degrees counterclockwise, transform each of the four original
points using the rotation matrix, and plot the resulting points. Does this look right? Reminder:
plot(1,2,‘x’) puts a mark at the point (�,�). Matlab: the functions cos and sin expect
radians, while cosd and sind expect degrees.

�. Operating on individual points with the rotation matrix is cool, but we can be much more
e�cient by operating on all � points at the same time. Write down the matrix whose columns
represent the four corners of the rectangle. Then write down the matrix multiplication
problem we can solve to transform the rectangle from above all at once. Create these matrices
in MATLAB to perform the rotation in a single operation. Plot the resulting matrix to con�rm
your transformation! Some MATLAB tips: plot(X,Y) creates a line plot of the values in
the vector Y versus those in the vector X. So if you wanted to plot a line from the origin (�,�) to
the point (�,�), you would do this: plot([� �],[� �]). The command axis([-xlim xlim
-ylim ylim]) sets the axes of the current plot to run from -xlim to xlim and from
-ylim to ylim

�. What is the area of the rectangle before and after the rotation?

�. What matrix should you use to undo this rotation? De�ne it in MATLAB and check.

�. Show on the board that the product of this matrix with the original rotation matrix is the
identity matrix. For clarity, let’s give this matrix the symbol R�1. It is the matrix that inverts
the original operation and is known as the inverse of the matrix R.

�.� �D Rotations

We can extend the idea of �D rotations to �D rotations. The simplest approach is to think of �D rotations as
a composition of rotations about di�erent axes. First let’s de�ne the rotation matrices for counterclockwise
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rotations of angle ✓ about the x, y and z axes respectively.

Rx =

2

64
1 0 0
0 cos ✓ � sin ✓

0 sin ✓ cos ✓

3

75 (�.�)

Ry =

2

64
cos ✓ 0 sin ✓

0 1 0

� sin ✓ 0 cos ✓

3

75 (�.�)

Rz =

2

64
cos ✓ � sin ✓ 0

sin ✓ cos ✓ 0

0 0 1

3

75 (�.�)

For example, to �rst rotate a vector v counterclockwise by ✓ about the x axis followed by counterclockwise
by � about the z axis, you need to do the following

2

64
cos � � sin � 0

sin � cos � 0

0 0 1

3

75

2

64
1 0 0
0 cos ✓ � sin ✓

0 sin ✓ cos ✓

3

75v (�.�)

We will next look at some sequence of physical rotations and relate them to these rotation matrices.

Exercise �.�
Hold a closed book in front of you, with the top of the book towards the ceiling (+z = (0, 0, 1)
direction) and the cover of the book pointed towards you (+x = (1, 0, 0) direction), which leaves
the opening side of the book pointing towards your right (+y = (0, 1, 0)) and the spine toward the
left.

�. Rotate the book by �� degrees counter-clockwise about the x-axis, then from this position,
rotate the book by �� degrees counter-clockwise about the z-axis. Which direction is the
cover of the book facing now?

�. Return to the starting position. Now rotate the book by �� degrees counter-clockwise about
the z axis, and then from this position, rotate the book by �� degrees counter-clockwise about
the x axis. Which direction is the cover of the book facing now? Is it the same as in part a?

�. An operation "commutes" if changing the order of operation doesn’t change the result. Do
�D rotations commute?

�. The cover of the book is originally pointed towards (1, 0, 0). Multiply this vector with the
appropriate sequence of rotation matrices from above to reproduce your motions from part �.
Do you end up with the correct �nal cover direction?

�. Multiply the (1, 0, 0) vector with the appropriate sequence of rotation matrices to reproduce
the motions from part �. Do you end up with the correct �nal cover direction?
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�. Multiply the result of the previous part by the appropriate sequence of rotation matrices to
return to the original (1, 0, 0) vector.

�. From either of your answers to part � or part �, try, instead of operating on the (1, 0, 0) vector
sequentially with one rotation matrix and then the other, take the product of the two rotation
matrices �rst, and then multiply (1, 0, 0) with the resultant matrix. Does this reproduce your
answer?

�. Based on your answers to the previous parts, show that (RzRx)�1 = R�1
x R�1

z . This is a
general property of matrix inverses – it works for all square, invertible matrices, not just
rotation matrices!

�.� Reflection and Shearing

In this activity we will meet re�ection and shearing matrices, which will allow us to explore transformation
matrices in general.

Reflection

Exercise �.�
What do the following re�ection matrices do? Think about it �rst, draw some sketches and then test
your hypothesis in MATLAB using the rectangle with vertices (0, 0), (2, 0), (2, 1), and (0, 1). How
much does the area of your basic rectangle change, if at all? What is the inverse of each?

�. 
�1 0
0 1

�

�. 
1 0
0 �1

�

�. 
cos 2✓ sin 2✓
sin 2✓ � cos 2✓

�
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Shearing

Exercise �.��
What do the following shearing matrices do? Think about it �rst, draw some sketches and then test
your hypothesis in MATLAB with the rectangle with vertices (0, 0), (2, 0), (2, 1), and (0, 1). How
much does the area of your basic rectangle change, if at all? What is the inverse of each?

�. 
1 1
0 1

�

�. 
1 0
1 1

�

�. 
1 2k
0 1

�

�. 
1 0
2k 1

�

Review and Preview
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Solution �.�

�. Scalars, vectors, and matrices are examples of arrays. A �-dimensional array can be thought
of as a scalar. A �-dimensional array is a vector. A �-dimensional array is a matrix.

�. The matrices have to be the same size and addition is element-wise.

�. The matrices have to compatible (inner dimensions agree), and the output is dictated by the
outer dimensions, i.e. (n ⇥ m)(r ⇥ s) = (n ⇥ s).

�. Distributive property: A(B + C) = AB + AC

�. Associative property: A(BC) = (AB)C

�. Commutative property: Two matrices commute if AB = BA but this is not always true.

Solution �.�

�. You need to show that A2A = AA2 for this particular matrix. You can do it by multiplying.

�. Using the distributive property you can see that (A + B)2 = (A + B)(A + B) = A2 +
AB + BA + B2

�. If you plug D and D2 into the equation you should �nd that the result is a zero matrix.

Solution �.�

�. The matrix exponential is de�ned by the power series expA = I + A + A2

2! + . . .. No-

tice that this A is diagonal and A2 =


22 0
0 32

�
and the exponential becomes expA =


1 + 2 + 22/2! + . . . 0

0 1 + 3 + 32/2! + . . .

�
. If you have seen power series before then you

will recognise that expA =


exp 2 0

0 exp 3

�
.

�. You can de�ne a general two by two matrix A =


a b
c d

�
, �nd A2, set each of the entries

equal to zero and �nd constraints on the entries a, b, c, d.

�. You need to show that AnA = AAn for any square matrix A and any positive integer n
by induction. First you show it is true for n = 1 and n = 2. Then assume it is true for some
n = k, and prove that it must be true for n = k + 1. You use the fact that A commutes with
itself and the associative property, i.e A2A = (AA)A = A(AA) = AA2.

Solution �.�

�. Okay, I placed my book on the table.
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�. You could get there by rotating once by �� degrees. This suggests that the product of two
rotation matrices of angles ✓1 and ✓2 is a rotation matrix of ✓1 + ✓2, i.e. R(✓1)R(✓2) =
R(✓1 + ✓2).

�. You end up in the same orientation so it doesn’t matter the order. This suggests that the order
of multiplication doesn’t matter so that two rotation matrices must commute.

Solution �.�

�. You could multiply out two rotation matrices with angle ✓1 and ✓2 in the two di�erent
orders and you will observe that the output is the same because real numbers commute, i.e.
cos ✓1 cos ✓2 = cos ✓2 cos ✓1.

�. If you multiply two matrices together you will get the following expression in the �rst row
and �rst column, cos ✓1 cos ✓2 � sin ✓1 sin ✓2. You will �nd a trig identity which reduces this
to cos(✓1 + ✓2). Similar reductions take place for the other elements.

Solution �.�

�. The rectangle is

y

x

�. The rotation matrix is

R =


cos 30 � sin 30
sin 30 cos 30

�
=

"p
3
2 � 1

2
1
2

p
3
2

#
.

Applying this to each point, we get

R


1
2

�
=

" p
3�2
2

1+2
p
3

2

#
, R


1

�2

�
=

" p
3+2
2

1�2
p
3

2

#
,

R


�1
2

�
=

"
�

p
3�2
2

�1+
p
3

2

#
, R


�1
�2

�
=

"
�

p
3+2
2

�1�
p
3

2

#
.

And the rotated �gure looks like,

y

x
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Solution �.�

�. There are lots of ways to do this point by point. Here is an example of how to transform the
bottom right point:

>> BR = [1;-2]
>> plot(BR(1,:),BR(2,:),’b*’)
>> rotmatrix = [cosd(30) -sind(30); sind(30) cosd(30)]
>> nBR = rotmatrix*BR
>> plot(nBR(1,:),nBR(2,:),’r*’)

�. There are lots of ways to do this. Here is an example where we include the �rst point twice
so that the points can easily be connected with lines:

>> pts = [1 -1 -1 1 1;2 2 -2 -2 2]
>> npts = rotmatrix*pts
>> plot(pts(1,:),pts(2,:),’b’), hold on
>> plot(pts(1,:),pts(2,:),’r’)
>> axis([-3 3 -3 3])
>> axis equal

�. The area of the rectangle is the same before and after rotation: � square units.

�. To undo this rotation you could simply rotate it by �� degrees clockwise, using the matrix

R�1 =


cos 30 sin 30

� sin 30 cos 30

�
.

�. The product of R�1 and R is

R�1R =


cos ✓ sin ✓

� sin ✓ cos ✓

� 
cos ✓ � sin ✓
sin ✓ cos ✓

�
=


cos2 ✓ + sin2 ✓ 0

0 cos2 ✓ + sin2 ✓

�
=


1 0
0 1

�

where we have used the trig identity cos2 ✓ + sin2 ✓ = 1.

Solution �.�

�. The cover is now facing toward the +y axis (the positive part of the y axis).

�. The cover is now facing the +z axis. This is di�erent than in part a.

�. Since the answers for the �rst two parts are di�erent, �D rotations do not commute.
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�. Let v be the vector that represents the initial direction of the cover of the book,

v =

2

4
1
0
0

3

5 .

Rotation by �� degrees counterclockwise around the x axis is given by

Rx =

2

64
1 0 0
0 0 �1

0 1 0

3

75 .

so that the new vector becomes

Rxv =

2

4
1
0
0

3

5

Rotation by �� degrees counterclockwise around the z axis is given by

Rz =

2

64
0 �1 0

1 0 0

0 0 1

3

75

so that the new vector becomes

RzRxv =

2

4
0
1
0

3

5

which is the correct �nal direction.

�. Using the matrices from above,

RxRzv =

2

4
0
0
1

3

5 .

�. To rotate �� degrees clockwise around the x axis we use the matrix

R�1
x =

2

4
1 0 0
0 0 1
0 �1 0

3

5

and to rotate �� degrees clockwise around the z axis we use the matrix

R�1
z =

2

4
0 1 0

�1 0 0
0 0 1

3

5 .

Then we can return the vector (0, 0, 1) to its original position (1, 0, 0) by

R�1
z R�1

x

2

4
0
0
1

3

5 =

2

4
1
0
0

3

5 .
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�. We can multiply the rotation matrices together and perform a single matrix multiplication.
For part d, the relevant matrix product is

RzRx =

2

4
0 0 1
1 0 0
0 1 0

3

5

and we see that

RzRx

2

4
1
0
0

3

5 =

2

4
0
0
1

3

5

as expected.

�. We can see from the previous parts that

(RzRx)�1 = R�1
x R�1

z .

In other words, when you take the inverse, the order of operations must swap!

Solution �.�

�. This matrix re�ects everything over the y-axis. In the �gure below, the original blue rectangle
becomes the orange rectangle. The area of the rectangle stays the same.

Figure �.�: Re�ection over y-axis.

�. This matrix re�ects everything over the x-axis. In the �gure below, the original blue rectangle
becomes the orange rectangle. The area of the rectangle stays the same.
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Figure �.�: Re�ection over x-axis.

�. For example, let ✓ = 30 degrees. Then the rectangle is re�ected along the line that is ��
degrees counterclockwise from the x-axis. In the �gure below, the original blue rectangle
becomes the orange rectangle.

Figure �.�: Re�ection over �� degree line.
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Notice that, if we plug in ✓ = 90, we get the matrix from part �, which re�ects over the x-axis
(i.e., �� degree line) and, if we plug in ✓ = 0, we get the matrix from part �, which re�ects
over the y-axis (i.e., the � degree line).

Solution �.��

�. This shearing matrix pulls the points along horizontal lines and the strength of the pull is
proportional to the y coordinate. In the �gure below, the blue rectangle is sheared to become
the orange rectangle:

Figure �.�: Shearing in x direction.

The area of the rectangle does not change. The inverse is

1 �1
0 1

�
.

�. This shearing matrix pulls the points along vertical lines and the strength of the pull is
proportional to the x coordinate. In the �gure below, the blue rectangle is sheared to become
the orange rectangle:
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Figure �.�: Shearing in y direction.

The area of the rectangle does not change. The inverse is


1 0
�1 1

�
.

�. This shearing matrix pulls the points along horizontal lines and the strength of the pull is
proportional to the y coordinate and the constant k (the bigger the k, the stronger the pull).
In the �gure below, with k = 2, the blue rectangle is sheared to become the orange rectangle:
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Figure �.�: Shearing in x direction with k = 2.

The area of the rectangle does not change. The inverse is

1 �4
0 1

�
.

�. This shearing matrix pulls the points along vertical lines and the strength of the pull is
proportional to the x coordinate and the constant k (the bigger the k, the stronger the pull).
In the �gure below, with k = 2, the blue rectangle is sheared to become the orange rectangle:
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Figure �.�: Shearing in y direction with k = 2.

The area of the rectangle does not change. The inverse is


1 0
�4 1

�
.
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