
Chapter �
Day �: Linear Independence, Span, Basis, and Decomposition

�.� Schedule

• ����-����: Debrief and Dancing Animal Demos

• ����-����: Synthesis

• ����-����: Mini-Lecture: Linear Independence, Span, Basis, Decomposition

• ����-����: Co�ee

• ����-����: Technical Details: Linear Independence, Span, Basis, Decomposition

• ����-����: Preview

�.� Debrief and Dancing Animal Demos

• Please discuss your overnight work with your table-mates, create a set of key concepts, and a set of
ideas that you are still confused by.

• Be prepared to demo your dancing animal!

�.� Synthesis

Exercise �.�
You should do all of these.

�. Assume the matrix D represents a geometrical object. What is the correct matrix expression
if we want to rotate it �rst (R), then scale it (S), and �nally translate (T) it?
A. DRST
B. TSRD
C. RSTD
D. DTSR

�. What would be the correct expression in order to undo the transformation in the previous
problem?

�. A and B are square, invertible matrices of the same size. Which of the following are always
true (no matter the entries in A and B?
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A. (AB)T = BT AT

B. (AB)�1 = B�1A�1

C. (AT )�1 = (A�1)T

D. det(AB) = det(A) det(B)
E. A + B = B + A
F. AB = BA
G. det(AB) = det(A) + det(B)
H. (AB)T = AT BT

I. (AB)�1 = A�1B�1

�.� Linear Independence, Span, and Decomposition

Exercise �.�
Consider two column vectors

a1 =

2

4
1
1
0

3

5 , a2 =

2

4
1
2
0

3

5 (�.�)

Both these vectors lie on the xy-plane since their z components are zero. De�ne a new vector
a3 = c1a1 + c2a2, where c1 and c2 are arbitrary variables. Therefore a3 is a linear combination of
a1 and a2.

�. Does a3 also lie on the xy-plane?

�. Next, de�ne a 3 ⇥ 3 matrix A whose columns are a1, a2 and a3. Show that the product of A
and any 3 ⇥ 1 vector always lies on the xy-plane.

Exercise �.�
Next, we will do a similar problem, but in MATLAB. Consider the following matrix:

B =

2

4
1 1 3
1 2 4
1 1 3

3

5 (�.�)

The third column of this matrix equals the second column plus twice the �rst column. Hence these
three vectors lie on some plane (not the xy-plane as in the previous part).
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�. Open up MATLAB and using the quiver3 command together with hold on, please plot
the vectors corresponding to the three columns of B, e.g., to plot the �rst column, type »
quiver3(0,0,0, 1,1,1); in MATLAB.

�. Using the "rotate �D" function on the MATLAB �gure window, rotate the �gure around so
that it appears as if all three arrows overlap. This should indicate that the vectors lie on a
plane.

�. Using det compute the determinant of matrix B. Does this make sense?

The fundamental property here is that the columns of the A and B matrices are not linearly independent.
We shall next de�ne the idea of linearly independent vectors more formally.

• A �nite set S = {x1,x2, . . . ,xm} of vectors in Rn is said to be linearly dependent if there exist
scalars c1, c2, . . . , cm which are not all zero, such that

c1x1 + c2x2 + . . . + cmxm = 0.

Note that Rn here refers to the set of all n-dimensional vectors that are made up of real numbers.
(For example, R1 is the real line and R2 is the plane.) For any value of n, Rn is an example of a
vector space - we will meet di�erent examples of vector spaces in the future. We can also express this
equation using a matrix A, whose columns are x1,x2, · · ·xm.

⇥
x1 x2 . . . xm

⇤
2

64
c1
...

cm

3

75 = 0 . (�.�)

If a non-zero solution exists to Ac = 0 then the set of vectors x1,x2, . . . ,xm is linearly dependent.
In the case of a square matrix (n = m), the vectors x1,x2, · · ·xm are linearly dependent if and only if
the det(A) = 0. Otherwise, the only way to satisfy the equation above is if c1 = c2 = · · · = cm = 0.
Figure �.� illustrates two examples of three vectors that are in �D space, but are linearly dependent,
since in each case, all three vectors are on a plane.

Figure �.�: Linearly dependent vectors in R3. (from Wikimedia Commons).
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• The set of vectors x1,x2, . . . ,xm is linearly independent if it is not linearly dependent. In other words,
the set of vectors x1,x2, . . . ,xm is linearly independent if

c1x1 + c2x2 + . . . + cmxm = 0 (�.�)

only when c1 = c2 = · · · = cm = 0. In other words, if the only solution to Ac = 0 is c = 0, the set
of vectors made up of the columns of A is linearly independent. For a square matrix this means the
set is linearly independent if and only if det(A) 6= 0.

Figure �.�: Linearly independent vectors in R3. (from Wikimedia Commons).

• The span of S is the set of all linear combinations of its vectors. In other words, the span of the set S
is the set of all possible vectors of the form

c1x1 + c2x2 + . . . + cmxm

The span is usually denoted by span(x1,x2, . . . ,xm).

• A �nite set S = {x1,x2, . . . ,xm} of vectors is said to form a basis of a vector space V , if the vectors
in S are linearly independent, and every point in V can be expressed as a linear combination of the
vectors in the set S. Hence, if a set of vectors S is linearly independent those vectors form a basis of
the set which is the span of those vectors.

Let’s solidify our understanding of linear dependence, bases and span by working on a few problems by
hand.

�� ���



Fifth Edition �.�.�

Exercise �.�

�. Determine which of the following sets of vectors are linearly independent.

a)

2

4
1
0
0

3

5,

2

4
0
1
0

3

5,

2

4
0
0
2

3

5

b)

2

4
1
3
0

3

5,

2

4
1
1
0

3

5,

2

4
0
1
0

3

5

c)

2

4
1
2
3

3

5,

2

4
1
1
0

3

5,

2

4
3
4
3

3

5

d) p, q, r and s, where the vectors are all �-dimensional.

e)

1
2

�
,

3
3

�

�. In words, describe the span of the vectors

1
1

�
and


1

�1

�
.

�. In words, describe the span of the vectors

2

4
1
1
0

3

5,

2

4
2
3
0

3

5 and

2

4
1

�1
0

3

5which are all in �-dimensional

Euclidean space.
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Orthogonality

Figure �.�: Projection

By trigonometry, if we have two vectors v1 and v2 which have an angle of ✓ between them, the component
of v2 which lies along the direction of v1 is |v2| cos ✓. Since the dot product of the two vectors can be
expressed as |v1||v2| cos ✓, this component (referred to as the projection) can be written as v1 · v2/|v1|. If
the projection is zero, the vectors are orthogonal, and v1 · v2 = 0. If the vectors are unit length, in addition
to being normal, the vectors are said to be orthonormal. Additionally, if a basis set is made up of orthonormal
vectors, it is known as an orthonormal basis.

A square matrix with columns of unit vectors which are orthogonal to each other is known as an
orthogonal matrix. An orthogonal marix A has the property that AT = A�1.

Exercise �.�
Which of the following pairs of vectors are orthogonal or orthonormal?

�.

2

4
1
2
3

3

5,

2

4
�3
2
1

3

5

�.

2

4
1
0

�3

3

5,

2

4
3
2
1

3

5

�.

"
2p
13

�2p
13

#
,

"
�3p
13
3p
13

#
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Decomposition

Suppose we have a set (collection) of m basis vectors {vi} which are normalized (|vi| = 1), mutually
orthogonal (vT

i vj = 0 unless i = j) and span our space (every point can be written as some linear
combination of the vectors {vi}). How do we actually �nd the linear combination which is equal to a given
vector in our space?

Let’s say we have a vector w which we are interested in expressing as a linear combination of our set of
orthonormal vectors {vi}. We can write this linear combination as

w =
mX

i=1

civi (�.�)

and our problem is now to �nd the coe�cients ci in this expression.
The obvious option is to pack the basis vectors vi into the columns of a matrix A, and �nd solutions of

Ac = w

Since the columns of A are formed from basis vectors they are linearly independent and a non-zero solution
exists and can be determined by the usual methods.
However, our basis vectors form an orthogonal set (collection) which permits a more direct calculation.

Consider a particular vector vk in our basis set, and let’s take the dot product between vk and our vector w:

vT
k w = vT

k

mX

i=1

civi (�.�)

Distributing the dot product into the summation we have:

vT
k w =

mX

i=1

civ
T
k vi (�.�)

But from orthogonality we know that the dot product of any two di�erent vectors in our orthonormal set is
zero, so all terms in the sum where k 6= i are zero. This leads to the following simpli�cation

vT
k w = ckv

T
k vk (�.�)

In addition, since our set of vectors is normalized, we know that vT
k vk = 1, leaving us with

vT
k w = ck (�.�)

This gives us a very nice, simple way of decomposing a vector into a linear combination of the vectors
within our basis set. The dot product of each basis vector with our target vector will result in the coe�cient
of that term in the linear decomposition.

Exercise �.�

�. There are many (in general, an in�nite number) of bases for a given set V . Hence, we can
describe elements in the set V as linear combinations of vectors from di�erent bases. Consider
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the following two basis sets which form bases for �-dimensional space.

• v1 =


1
0

�
, v2 =


0
1

�
and

• u1 =

"
1p
2
1p
2

#
, u2 =

"
� 1p

2
1p
2

#

Express the vector w =


2
3

�
as a linear combination of the �rst basis set (i.e., a sum of scaled

versions of each vector in the basis set). Repeat for the second. Please make two di�erent

drawings of

2
3

�
, one expressed as a sum of scaled vectors in the �rst basis set and another

for the vectors from the second basis set. Please label the lengths of each vector in the set.

�. Suppose that you wish to write the vector w =

2

4
1
2
4

3

5 as a linear combination of the vectors

v1 =

2

4
1
1
1

3

5 , v2 =

2

4
3
1
2

3

5 and v3 =

2

4
1
2
2

3

5 .

Please write a matrix equation to �nd the coe�cients of the linear combination, and solve for
the coe�cients using MATLAB if possible.

�. Representing vectors using di�erent bases is a very powerful technique that we will keep
coming back to in this class (in both semesters). Vectors described in di�erent bases can
give us insight that may not be so obvious when viewed in the original basis. Representing
vectors in di�erent bases can also be used for dimensionality reduction, which is an important
technique that is used to speed up computations and compress data in a number of di�erent
�elds. Here we will consider a problem of lossy data compression using a change of basis.
Lossy compression refers to methods of representing data more e�ciently, but with a loss of
accuracy. Examples of lossy data compression include jpg images, and mp� audio �les. If care
is taken in lossy compression, the e�ects of the data loss can be kept at acceptable levels (this
is of course subjective and dependent on the application). We will start with a toy example
and then move to more complicated ones in subsequent homework problems. Consider a set
of four �-dimensional data variables stored in the following vectors:

d1 =


2.2
1.2

�
,d2 =


1

0.6

�
,d3 =


1.5
0.7

�
,d4 =


1.7
0.8

�
(�.��)

a) In MATLAB, plot the data using points (without lines connecting them) by typing
plot([2.2 1 1.5 1.7],[1.2 0.6 0.7 0.8], ’o’); You will �nd
that these points lie close to the line through the origin with slope �/�.
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b) De�ne a unit vector that points in the direction

2
1

�
and call it u1. Find another unit

vector that is orthogonal to u1 and call it u2. These vectors form a basis in � dimensional
space.

c) Rather than storing the original data, we are now going to express the original data in
terms of the new basis that we have de�ned. To do that, write d1,d2,d3 and d4, as a
linear combination of u1 and u2. You can use MATLAB here to �nd the coe�cients.

d) In this toy example, we are going to "compress" our data by only keeping the coe�cients
corresponding to u1. i.e. we will discard the coe�cient corresponding to u2. Suppose
that we wish to recover approximations to d1,d2,d3,d4, from the four coe�cients.
These approximations, which you should denote by d̃1, · · · d̃4, are all scaled versions of
u1. In your axes from part a, please plot the points corresponding to d̃1, · · · d̃4. Do you
think they make good approximations?

e) We can describe how well our compressed data represents our original data. One way to
do this is to calculate the di�erence between our original and compressed data, and call
this error vector fi = di � d̃i. Now, compute the size of this error using norm(fi) for
i = 1, 2, 3, 4. Then, summarize the error by �nding the root-mean-square (RMS) error
between your approximations and the true data points. The RMS function squares the
errors, takes the mean, and then takes the square root. This quantity is a single number
that can be used to measure how well or poorly your compressed data represents your
original data. You may �nd MATLAB’s norm and rms functions helpful here.

This toy example illustrates that we can sometime be more e�cient (albeit at the cost of some
accuracy) in representing (or computing) data when it is expressed in certain bases.
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Solution �.�

�. Yes, a linear combination of two vectors which lie in the xy-plane will also lie in the xy-plane.

�. Let A be the matrix

A =

2

4
1 1 c1 + c2
1 2 c1 + 2c2
0 0 0

3

5

and let v be an arbitrary 3 ⇥ 1 vector

v =

2

4
x
y
z

3

5 .

Then the product

Av =

2

4
x + y + (c1 + c2)z

x + 2y + (c1 + 2c2)z
0

3

5

lies in the xy-plane

Solution �.�

�. Type the following into MATLAB:
» quiver3(0,0,0,1,1,1)
» hold on
» quiver3(0,0,0,1,2,1)
» quiver3(0,0,0,3,4,3)

�.

�. The determinant ofB is zero. Recall that amatrix is not invertible if and only if the determinant
is zero. This matrix is not invertible since it collapses all vectors to a plane.

Solution �.�
�. a) They are linearly independent since they span R3.

b) They are linearly dependent since the �rst vector is equal to the second vector plus two
times the third vector.

c) They are linearly dependent since the third vector is equal to the �rst vector plus two
times the second vector.

d) They are linearly dependent. You can have a maximum of n linearly independent vectors
in Rn.

e) They are linearly independent since they do not lie on the same line.

�. The span of these two vectors is all over R2, i.e., a plane.
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�. The span of these three vectors is the xy-plane in R3.

Solution �.�

�. The dot product of these two vectors is non-zero, so they are not orthogonal.

�. The dot product of these two vectors is zero, so they are orthogonal.

�. The dot product of these two vectors is zero, so they are orthogonal. Furthermore, each vector
is unit length, so they are orthonormal.

Solution �.�

�. It’s clear that 2v1 + 3v2 = w. We visualize this as

w

2v1

3v2

To write w as a linear combination of the basis vectors u1 and u2 requires a bit more work.
We can set up the matrix equation

"
1p
2

�1p
2

1p
2

1p
2

# 
c1
c2

�
=


2
3

�

and solve to learn that 5p
2
u1 + 1p

2
u2 = w. We can visualize this as

w
5p
2
u1

1p
2
u2

�. First, we create a matrix in MATLAB whose columns are the vectors v1, v2, and v3,
» V=[1 3 1; 1 1 2; 1 2 2]
and the vector w,
» w=[1; 2; 4].
Let c be the vector of coe�cients. We have the equationVc = w, so to solve for cwe compute
c = V�1w. In MATLAB, we use » inv(V)*w. This tells us that w = �10v1 +2v2 +5v3.
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�. a)
b) We de�ne » u1=[2; 1] and » u2=[-1; 2]. There are other choices for u2, but

they are all constant multiples of this choice, e.g., » u2=[-2;4].
c) Create a 2 ⇥ 2 matrix with u1 and u2 as the columns,

» U=[2 -1; 1 2]
and a 2 ⇥ 4 matrix the vectors di as the columns
» D=[2.2 1 1.5 1.7; 1.2 0.6 0.7 0.8].
Then compute
» inv(U)*D
to get the matrix of coe�cients. This tells us that

d1 = 1.12u1 + 0.04u2, d2 = 0.52u1 + 0.04u2,

d3 = 0.74u1 � 0.02u2, and d1 = 0.84u1 � 0.02u2.
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