
Chapter ��
Day �: AI Discussion, Smile Detection and Eigenthings

��.� Schedule

• ����-����: Debrief

• ����-����: AI and Society Discussion

• ����-����: Smile Detection—Concepts

• ����-����: Co�ee

• ����-����: Machine Learning

• ����-����: Smile Detection—Implementation

• ����-����: Eigenthings

• ����-����: Review/preview

��.� Debrief and Synthesis [�� mins]

• Please discuss your overnight work with your table-mates, and get help with the ideas that you are
still confused by.

��.� AI and Society Discussion [�� mins]

Framing (� minutes)

Today we’ll be talking about a constellation of issues that arise when AI technology, like facial recognition,
is deployed in society. As the historian Melvin Kranzberg famously remarked, “Technology is neither good
nor bad; nor is it neutral.” As you saw in the reading from the night assignment, the e�ect of AI technology
in society intersects a number of sensitive issues around race, class, and gender. Due to intersection of AI
and these sensitive issues, it helps to take a few minutes to consider some guidelines for having fruitful
discussions at your tables.

• Check out this poster put together by some Oliners with suggestions for having conversations on
sensitive topics.

• The readings provide common information and framing, which we �nd is very helpful to �nding
common ground when discussing issues that individuals may relate to in very di�erent ways.

• As you may be relatively new to these ideas, consider adopting a mindset of identifying key questions
rather than necessarily coming to conclusions.

• When talking about the e�ect of a technology on a group that has been historically oppressed, you
should be particularly sensitive in these discussions if you are not a member of this group. Be
conscious of the ways in which your words might be experienced by those who may have faced a
history of discrimination due to being a member of this group.

��� ���
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Unpacking the Readings (�� minutes)

Write down key concepts and clear up points of confusion on the readings.

• Joy Buolamwini’s written testimony on bias in facial recognition technology (you may have watched
this instead).

• Principles for Accountable Algorithms

• Google’s Inclusive ML

Share Your Positive Application of AI (�� minutes)

Go around and share the application of AI that you think has the potential for great positive impact on
society. Say a little bit about what you learned and how you think it would have a positive impact (e.g., in
what ways and for whom).

What Did You Take Away? (�� minutes)

Please have one person take notes on this in some electronic format so they can submit it as part
of their day survey
As a table, discuss what you took away from the readings and your discussion thus far. Here are some

dimensions that you might want to explore.

�. What parts or quotes from the readings were most surprising / impactful to you?

�. Were you surprised by your reaction to reading any of the material (e.g., felt unexpectedly angry, sad,
indi�erent)?

�. What are the big questions that have been raised for you (these could be things that were already on
your radar or new ones entirely)? These questions could relate to our society as a whole, your role as
a citizen within society, your role as an Olin student, your future career path, etc.).

�. How do these readings intersect with knowledge you’ve gained from other contexts (e.g., in other
courses or in your daily life experience)?

��.� Smile Detection—Concepts [�� mins]

In this session we are going to use our toolbox of linear algebra skills to “detect” whether or not a person is
smiling in a photograph. The approach that we will take is very common in machine learning - we will
use a dataset to train our algorithm, and we will use a di�erent dataset to test our algorithm. We will �rst
develop the conceptual framework and then implement the approach in MATLAB.

��� ���

https://docs.house.gov/meetings/GO/GO00/20190522/109521/HHRG-116-GO00-Wstate-BuolamwiniJ-20190522.pdf
https://www.fatml.org/resources/principles-for-accountable-algorithms
https://cloud.google.com/inclusive-ml/
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The Big Idea

Let’s assume that we have ��� training photos of faces, each consisting of a � by � grid of pixels. Let’s pack
these into a matrix A with ��� rows and �� columns, i.e. every row is a di�erent face and every column is a
di�erent pixel.

Let’s also assume that we have already classi�ed every training face as “smiling” or “not-smiling”. Let’s
create a column vector b with ��� rows (corresponding to each face) which has either 1 (smiling) or 0
(not-smiling).

Let’s now develop a linear system of algebraic equations by trying to express the vector b as a linear
combination of the columns of A, i.e.

Ax = b

Notice that the vector x is a column vector with �� rows - one row for each pixel. Since there are
more rows than columns we know that an exact solution does not exist, so we will �nd the approximate
solution by orthogonal projection, i.e. we will solve

AT Ax = AT b

Now that we have the vector x, let’s use it to detect whether a test image is smiling. Assuming that the
test image is packed into a single row vector t (with �� columns) then the product

tx

will return a scalar. If this scalar is close to “�” then we predict the face is smiling. If this scalar is close to
“�” then we predict the face is not smiling.

Exercise ��.�
In this exercise you will be carefully reading and interpreting this big idea. We are including these
questions as a sca�old, pointing out interesting features along the way.

�. Read “The Big Idea” again!

�. Interpret what it means to write down the linear system of equations Ax = b and give a
meaning to the vector x.

�. Interpret the product AT A and the product AT b.

�. The vector x does not satisfy Ax = b exactly. What does the expression Ax � b tell you?

�. How would you decide whether your “trained” algorithm was worth using on a test dataset?

�. Assume you had �� test images with �� pixels each and that you pack them into a matrix T
with �� rows and �� columns. Write down the matrix-vector product you would use for smile
detection on this test dataset.

�. How would you measure the accuracy of your predictions if we also provided you with the
data on whether each test image was smiling or not?

��� ���
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��.� Machine Learning in general [�� mins]

Machine learning is an interdisciplinary �eld concerned with the idea that rather than preprogramming
machines to solve tasks explicitly, instead we can program them to learn to solve tasks through experience.
In order to connect this idea to what you’ve done thus far, �rst we’ll introduce a somewhat more formal
de�nition of machine learning.

A computer program is said to learn from experience E with respect to some class of tasks T and performance
measure P if its performance at tasks in T, as measured by P, improves with experience E.

— Tom Mitchell

Let’s take the smile detection problem that you just framed in the preceding section of the document.

Symbol from Mitchell’s De�nition Smile Detection
E � by � grids of pixels with corresponding labels as to whether

or not the person in the grid is smiling
T Given a new � by � grid of pixels, predicting whether the

person in the image is smiling.
P Accuracy on predicting whether a person is smiling (e.g.,

percent correct)
The last part of the de�nition states that in order to say a program is “learning”, it should “improve with

experience E.” In the case of smile detection, what this means is that given more images with corresponding
indication of whether each person is smiling, our program should get better at predicting whether a face is
smiling. Later in this document when you implement smile detection, you’ll see that the framing of smile
detection as an LSAE problem absolutely meets this de�nition (and does a surprisingly good job at it too)!

Exercise ��.�
In this exercise you and your table-mates will be working to frame various machine learning
problems as systems of linear equations. In doing so, you should answer the following questions.

• What is the thing you want to predict (i.e., what is your b in Ax = b).

• What quantities are you using to make your prediction (i.e., what do each of the rows and
columns in the matrix A represent)?

• While x would be determined by solving Ax = b, come up with a guess as to what x would
be (don’t worry about coming up with numbers. Instead, try to identify the sign of each
element of x and whether its magnitude is large or small relative to the other entries of x).

• How would you measure how well your system works? For example, for smile detection we
might apply our learned model x to new data and see how often it correctly predicts the facial
expression (smiling vs. not smiling) of the person in each image.

��� ���



Fifth Edition ��.�

• What sorts of issues of bias might you have to worry about in this system?

�. AirBnB has a smart pricing option that lets folks who list their properties on the site have the
price for those listings determined automatically. How might you frame the creation of this
smart pricing tool as solving a system of linear equations? We suggest that you follow the
steps outlined at the start of this exercise. You might want to do a quick AirBnB search if you
are not familiar with the site.

�. Net�ix suggests content to a user that they are likely to enjoy based on their viewing history as
well as the viewing histories of others. In the past (although we think possibly not anymore),
they used to also incorporate ratings data (� to � stars) of particular movies from both the
user receiving the recommendation and other users on the site. How might you frame the
creation of this recommendation system in terms of solving a system of linear equations? We
suggest that you follow the steps outlined at the start of this exercise. You might want to do a
quick Net�ix search if you are not familiar with the site.

��.� Smile Detection—Implementation [�� mins]

Please download the �le smiles.mat from the canvas site. If you load this �le in MATLAB, you will
then have access to the following variables in your workspace.

train_data - a 3D array containing 19685 24 x 24 pixel
images of faces

smile_flag_train - a vector of the same length as the number
of images in train_data, with 1s indicating
which images are smiling

test_data - 500 24 x 24 pixel images of faces
smile_flag_test - a vector of the same length as the number

of images in test_data, with 1s indicating
which images are smiling

The ‘train data’ and the associated ‘smile �ag train’ are the sets of data you should use to develop your
mathematical model. The ‘test data’ and its associated ‘smile �ag test’ are the sets of data you should use to
test your algorithm when you are �nished!

Exercise ��.�
For this exercise we recommend that you use our walkthrough notebook. The notebook has
embedded solutions or you can try it with minimal sca�olding using the suggested process below.
Even if you decide not to use the walkthrough notebook, it’s worth running the embedded solutions
to pickup some techniques for visualizing your smile detector model. In any case, as you move into
actually implementing the smile detector, we recommend you work as pairs at your table. Working
in a pair will allow you to have someone to bounce ideas o� of and also make sure you can see the

��� ���

https://www.airbnb.com/help/article/1168/how-do-i-turn-smart-pricing-on-or-off
https://canvas.instructure.com/courses/1774456/files?preview=87166282
https://canvas.instructure.com/courses/1774456/files?preview=87166298
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laptop easily.
Only if you decide NOT to use the walkthrough notebook, you should consider following the
procedure below to implement the smile detector.

�. Sketch out a set of steps you would take in order to implement smile detection. (Just words
here - no code. e.g. we will have to pack all images into a single matrix)

�. Turn this set of steps into MATLAB pseudo-code. Identify important coding elements without
implementing, e.g. we will use reshape to pack the given dataset into a matrix.

�. Review the documentation for MATLAB functions that will be used and be clear on how to
use them before implementation, e.g. » help reshape

�. Methodically implement smile detection in MATLAB, testing as you go.

��.� Introduction to Eigenthings [�� mins]

We are now going to learn the secret of the genie ...

Eigenvalues and Eigenvectors: Definition and Notation

Consider a square n ⇥ n matrix A. A vector v is said to be an eigenvector of A with corresponding
eigenvalue � if v is not a vector of all zeros, and

Av = �v. (��.�)

If we treat A as a transformation matrix then v is an eigenvector of A if it is simply scaled when acted
on by the matrix A. In other words, v does not change direction when acted upon by A. In general, an
n ⇥ n matrix has exactly n eigenvalues (although some of these may be repeated and some of these may be
complex!). Note that any scalar multiple of an eigenvector of a matrix is also an eigenvector of that matrix -
it’s only the direction of the eigenvector that matters.

In the next overnight assignment we are going to develop formal techniques for �nding the eigenvalues
and eigenvectors of matrices. For now, we are going to focus on concepts and developing some intuition.

Exercise ��.�

�. Show that v =

"
1p
2
1p
2

#
is an eigenvector of the following matrix by computing the product

Av, and �nd the corresponding eigenvalue

A =


1 1
2 0

�
(��.�)

��� ���
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�. On the same axes, plot the vector representing v =

"
1p
2
1p
2

#
and Av. Does the plot con�rm

that this is an eigenvector?

�. On the same axes, plot the vector representing u =

 1p
2

1

�
and Au. Is this is an eigenvector

of A?

Eigenvalues and eigenvectors of a diagonal matrix

Recall from our earlier work that the matrix

A =


2 0
0 3

�

scales vectors by a factor of � in the x-direction and by a factor of � in the y-direction. Thus a vector that
had a non-zero component only in the x direction will be scaled by a factor of 2 when transformed by this

matrix. In other words, �1 = 2 is an eigenvalue with corresponding eigenvector v1 =


1
0

�
, and that �2 = 3

is an eigenvalue with corresponding eigenvector v2 =


0
1

�
. Let’s check if the �rst one is true:

Av1 =


2 0
0 3

� 
1
0

�
=


2
0

�
= 2


1
0

�
= 2v1

Therefore �1 = 2 is an eigenvalue with corresponding eigenvector v1 =


1
0

�
.

Exercise ��.�

Con�rm that �2 = 3 is an eigenvalue with corresponding eigenvector v2 =


0
1

�
by computing the

product Av2.

Based on this example, we can heuristically guess that the eigenvalues of an n ⇥ n diagonal matrix are
the entries on the diagonal. The n eigenvectors each have a single � in them, with the remaining entries
being zero.

��� ���
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Exercise ��.�
What are the eigenvalues and eigenvectors of the following diagonal matrices

�.

A =

2

4
�3 0 0
0 �1 0
0 0 4

3

5

�.

A =

2

4
2 0 0
0 4 0
0 0 0

3

5

Exercise ��.�

�. Assume that v =


1
1

�
is an eigenvector with eigenvalue 3. Construct an appropriate matrix

A with this eigenvalue and eigenvector by �rst rotating v onto the x-axis, scaling it by 3, and
then rotating back.

Exercise ��.�
What is one eigenvector of the following matrix?

R =

2

4
cos ✓ 0 sin ✓

0 1 0
� sin ✓ 0 cos ✓

3

5 (��.�)

��.� Review and Preview [�� minutes]

��� ���
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Solution ��.�

�. Read, read, read ....

�. We are trying to take a linear combination of the data in order to predict whether each image
is smiling or not. The vector x is the magic set of weights we have to use. Its size is the same
as the number of pixels, so maybe it should look like a mask that we can place over an image
to tell us whether it is smiling.

�. The product AT A is like a pixel to pixel correlation matrix, except we haven’t scaled the
data matrix A. The product AT b is the sum of the images that are smiling.

�. The expression Ax � b tells us the error in predicting whether a training image is smiling or
not.

�. We could add up how often the predictor is correct and divide by the number of images to get
an estimate of the accuracy. We would decide on a cut-o� before we used it on a test dataset.

�. It is simply Tx.

�. As before. Determine how many we got correct and average it.

Solution ��.�
You can use the solutions that are embedded in the walkthrough notebook.

Solution ��.�

�. Compute that

Av =

p
2p
2

�
= 2v

and so the corresponding eigenvalue is � = 2.

�. As we can see in the picture below, both v andAv point in the same direction, which con�rms
v is an eigenvalue of A

y

x

vAv

�. As we can see in the picture below, u and Au point in di�erent directions, so u is not an
eigenvector of A

��� ���
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y

x

u
Au

Solution ��.�
We compute that

Av2 =


2 0
0 3

� 
0
1

�
=


0
3

�
= 3


0
1

�
= 3v2.

Solution ��.�

�. The eigenvalues are �1 = �3, �2 = �1 and �3 = 4 and the corresponding eigenvectors are

v1 =

2

4
1
0
0

3

5, v2 =

2

4
0
1
0

3

5 and v3 =

2

4
0
0
1

3

5.

�. The eigenvalues are �1 = 2, �2 = 4 and �3 = 0 and the corresponding eigenvectors are

v1 =

2

4
1
0
0

3

5, v2 =

2

4
0
1
0

3

5 and v3 =

2

4
0
0
1

3

5.

Solution ��.�

�. First rotate it using a �� degree clockwise rotation matrix

R(�45) =


cosd(�45) �sind(�45)
sind(�45) cosd(�45)

�
(��.�)

Now that it is along the x-axis we can scale it by � using the scaling matrix

S =


3 0
0 0

�
(��.�)

We then rotate it back using R(45). Multiplying these matrices together gives

A =


1.5 1.5
1.5 1.5

�
(��.�)

Solution ��.�

The vector v =

2

4
0
1
0

3

5 is an eigenvector of R because it is the rotation axis and therefore remains

unchanged on rotation.
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