
Chapter �
Night �: Matrix Operations

Overview and Orientation

� Learning Objectives

Concepts

• Compute the determinant of a 2 ⇥ 2 matrix

• Know the relationship between the determinant of a matrix and whether the matrix is
invertible

• Find the inverse of a 2 ⇥ 2 matrix by hand

• Use computational tools to �nd the inverse of an n ⇥ n matrix

• Design a � or �-dimensional matrix that will scale a vector by given amounts in the x, y or z
direction

• Design a �-dimensional matrix that will translate a �-D vector by given amounts in x and y

MATLAB skills

• Represent a set of points in �-D space (i.e., pairs of x, y values) as column vectors

• Transform a set of �-D points (i.e., the outline of a shape) using a matrix to rotate and translate
the original

• Multiply matrices and �nd their inverses

• Compute the determinant of a matrix

Suggested Approach

See Night � assignment for our general suggested approach to night assignments and a list of linear algebra
resources.

�.� Determinant of a Matrix

The determinant of a square matrix is a property of the matrix which indicates many important things,
including whether a matrix is invertible or not. We will see more of this when we see matrix inverses
shortly. The determinant of a matrix G is denoted a few di�erent ways.

det(G) = |G| (�.�)
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Consider a generic 2 ⇥ 2 matrix G:

G =


a b
c d

�

The formula for the determinant of a 2 ⇥ 2 matrix is quite straightforward:

det(G) = ad � bc (�.�)

For example, for the following 2 ⇥ 2 matrix,

det
✓

1 2
3 4

�◆
=

����
1 2
3 4

����

= (1)(4) � (2)(3) = �2 (�.�)

Exercise �.�
Return to the transformation matrices in the day assignment and calculate the determinant for the
following:

�. The generic 2 ⇥ 2 rotation matrix

cos ✓ � sin ✓
sin ✓ cos ✓

�

�. The matrix which re�ects over the y axis

�1 0
0 1

�

�. The matrix which shears in the horizontal direction

1 1
0 1

�

Exercise �.�

�. What do the following matrices do? Think about it �rst, draw some sketches and then test
your hypothesis in MATLAB. How much does the area of your basic rectangle change, if at
all?
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a) 
1 1
1 1

�

b) 
1 0
1 0

�

�. Is it possible to “undo” the matrices above? Why or why not?

Exercise �.�

�. What are the determinants of the two matrices from the previous exercise, Exercise �.�?

�. Generalizing from Exercise �.� and Exercise �.�, what’s the relationship between the determi-
nant of a matrix and the result of transforming a rectangle by that matrix?

Finding the determinant of an n ⇥ n matrix, where n > 2, is a bit more computationally intensive. If you
want to learn how to do the procedure by hand, check out this Khan Academy video. For this course, we
simply recommend you use the det function in MATLAB.

�.� Matrix Inverses

Inverse of 2 ⇥ 2 Matrices

In class you worked with rotation matrices and transformations that were compositions of simpler rotations,
and you learned how to invert them. When you multiply a vector by any matrix (not just ones that are
associated with simple spatial transformations), you transform the original vector into a new vector. More
generally (than rotations), you can often undo the linear transformation (just like you did with the rotation
matrix). Undoing this linear transformation is a linear transformation itself! Therefore the act of undoing a
linear transformation can be formulated with a matrix multiply.

Exercise �.�
Consider the following matrices and vector. (Don’t try to interpret these as intuitive geometrical
operations; we’re just using them to explore the determinant.) Work out the following problems in
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MATLAB.

P =


2 1
4 3

�
(�.�)

Q =


3
2 � 1

2
�2 1

�
(�.�)

u =


2
3

�
(�.�)

�. Find w = Pu.

�. Find Qw. How is this related to u?

�. Find QP. Does the answer look familiar?

�. Find PQ.

�. Find the determinant of P. In MATLAB, you can compute the determinant of any (not just
2 ⇥ 2) matrix using the det function.

�. Find the determinant of Q.

A matrix B is said to be the inverse of the matrix A if, and only if, BA = I and AB = I, where I is the
identity matrix. For 2 ⇥ 2 matrices, the inverse (if it exists) is given by the following

G =


a b
c d

�
(�.�)

G�1 =
1

ad � bc


d �b

�c a

�
(�.�)

The last equation should indicate to you that the inverse of the matrix G�1 is only de�ned if ad � bc 6= 0.
Sweet mother of linear algebra, ad � bc is our buddy the determinant. More generally, any square matrix
can be inverted if and only if its determinant is non-zero.
Now let’s practice calculating inverses, some of their properties, and how we may use them.

Exercise �.�
All matrices A and B which have inverses have the following properties

(AB)�1 = B�1A�1

(AT )�1 = (A�1)T

�. Using the above properties, please compute the following by hand.
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a) If

P =


2 1
4 3

�
(�.�)

B =


1 2
2 3

�
(�.��)

(�.��)

�nd (PB)�1. Recall that you already know the inverse of P from earlier.
b) For P as de�ned above, �nd

(PT )�1 (�.��)

�. Use the inverse formula to calculate the inverses for the �rst three matrices in Exercise �.�.
Con�rm your answers by multiplying the inverse with the original matrix.

a) By hand, write an equation relating n and d, using a matrix-vector product.
b) By hand, calculate how many oranges and apples you have.
c) Why do you think this type of problem is often called an inverse problem?

Note that solving matrix-vector equations like above can be done without explicitly computing the matrix
inverse which is computationally expensive. (A nod to our future friend, left matrix divide or backslash
divide.)

Inverse of n ⇥ n Matrices

For higher-dimensional matrices, e.g. n ⇥ n matrices for n > 2, the matrix inverse is de�ned in the same
way. Suppose you have an n ⇥ n matrix A and an n ⇥ n matrix B. Then B is the inverse of A if and only
if BA = I and AB = I. The following are some properties of inverses of matrices

• Only square matrices are invertible, i.e., only square matrices have inverses.

• A matrix has an inverse only if its determinant is non-zero.

There are a number of di�erent procedures to compute the inverse of higher-dimensional matrices, but
we will not be going into the details of their computation here. You can look them up if you are interested,
or need to in the future. In MATLAB, you can compute the inverse of a matrix using the inv function.

Exercise �.�

�. Consider the example with the fruits that you worked out earlier. Now, in addition to apples
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and oranges, suppose you also had an unknown number of pears which each weigh � oz, and
cost $�. Additionally, suppose that the total weight of the fruits is �� oz, and you paid a total
of $�� for the fruit.

a) If possible �nd the numbers of oranges, apples and pears. If not, please explain why.
b) Suppose that you additionally know that you have a total of �� fruits. Can you formulate

and solve a matrix-vector equation to �nd out the numbers of oranges, apples and pears
you have?

c) What is the determinant of the matrix you have set up to solve this?

�. The fruit vendors bought the pricing algorithm from Uber. Oranges are still $�, pears are
now only $�.��, and (due to an in�ux of teachers) apples are now surging at $�.�� each. Their
weights stay the same. You return to the market, and again purchase �� fruits, which have
the same total weight and total cost.

a) Can you formulate and solve a matrix-vector equation to �nd out the numbers of oranges,
apples and pears you have?

b) What is the determinant of the matrix you have set up to solve this?
c) Debrief at your table about what this means.

�.� Transformation Matrices, Continued

Scaling

Returning to two dimensions. In the Night � assignment, you also learned about scaling matrices. Recall
that the scaling matrix S scales the x-component by s1 and the y-component by s2

S =


s1 0
0 s2

�
.

Let’s assume for the moment that s1 = 2 and s2 = 1/3. Working with the rectangles de�ned in class whose
corners have coordinates (1, 2), (1, �2), (�1, 2), and (�1, �2) complete the following activities:

Exercise �.�

�. Predict what would happen if you operate on the rectangle with S.

�. Write a MATLAB script to carry out this operation and check your prediction.

�. How does the area of the rectangle change?
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�. What matrix should you use to undo this scaling? Show that the product of this matrix with
the original scaling matrix is the identity matrix.

�. De�ne it in MATLAB and check. Again, this is the inverse matrix and we give it the symbol
S�1.

�. In MATLAB, change the value of s2 to � and �nd the product of the new S and your rectangle.
How does the area of the rectangle change? Change the value of s2 back to �/�.

�. Predict what would happen if you operate on the original rectangle with SR, where R is the
rotation matrix. How about RS? Implement both of these in MATLAB and check.

�. How would you undo each of these operations (SR and RS)? How is the inverse of the
product related to the individual inverses, i.e. what is the relationship between (SR)�1 and
S�1 and R�1? What about (RS)�1?

Translation

It would be really useful if, in addition to scaling and rotating our objects, we could translate them. Let’s start
by thinking about vectors and then we will �gure out how to represent translation as a matrix operation.
Consider an initial vector v and a translation vector t. The new translated vector is simply v + t. For

example, if you start with the initial vector v =


x
y

�
and translate it using the vector


2
3

�
then the new

vector is just

x + 2
y + 3

�
. More generally, if the translation vector is


tx
ty

�
then the new vector will be


x + tx
y + ty

�
.

Wouldn’t it be handy if we could de�ne translation as a matrix operation? Yes, indeed it would be, we
hear you say. Here is the standard method: add another entry to the original vector, and set it equal to �,

i.e., v =

2

4
x
y
1

3

5. Now de�ne the translation matrix as

T =

2

4
1 0 tx
0 1 ty
0 0 1

3

5 .

Exercise �.�

�. Show that Tv accomplishes the process of translation (if you ignore the third entry in the
new vector). What is the �nal vector?

�. Predict what would happen if you operate on our old friend the rectangle with the translation
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matrix de�ned by tx = 2 and ty = 3.

�. Write a MATLAB script to carry out this operation and check your prediction. How has the
area of your rectangle changed?

�. What matrix should you use to undo this translation? Show on paper that the product of this
matrix with the original translation matrix is the identity matrix. De�ne it in MATLAB and
check. Again, this is the inverse matrix and we give it the symbol T�1.

�. Choose a rotation matrix R. Predict what would happen if you operate on the original
rectangle with TR. How about RT? Implement both of these in MATLAB and check. How
would you undo each of these operations? (You will �rst have to adjust your de�nition of R
so that it is the correct size.)

�. Predict what would happen if you operate on the original rectangle with STR. How about
TRS? How would you undo each of these operations? (You will �rst have to adjust your
de�nition of S so that it is the correct size.)

�. How would you generalize translation to �D?

Pu�ing it all together: Dancing Animals

In this activity you will animate a circus act. (No real or imaginary animals will be injured in this perfor-
mance.) Here is what we would like you to do:

Exercise �.�

�. Decide on an animal.

�. Decide on a circus act that consists of a set of translations, rotations (think back to Day �),
shearings, and/or scalings in some order. Storyboard this idea and imagine the resulting
animation.

�. Propose a set of points that de�nes the outline and relevant features of your animal. You may
�nd ginput useful. De�ne the points in MATLAB and plot your animal.

�. Create a script that makes your animal dance (in �-D, unless you really want to go �-D). You
may want to make use of the pause and drawnow commands.

�. Now use your sequence of operations and animate your animal! In class you will have the
opportunity to show o� your dancing animal!
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�.� Conceptual�iz

�. The orange shape is the result of applying a matrix M to the blue rectangle.

What is the determinant of M?

�. The orange shape is the result of applying a matrix M to the blue rectangle.
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What is the determinant of M?

�. The determinant is multiplicative, i.e, det(AB) = det(A) det(B). Let M be a matrix such that
det(M) = 1

3 . What’s det(M�1)? (Hint: det(I) = 1.)

�. Let R be a rectangle with area �. Apply the scaling matrix S =


s1 0
0 s2

�
. What is the area of SR?

A. s1s2
2

B. �
C. s1s2
D. s1 + s2

�. True or false: Any shearing matrix S and any rotation matrix R commute, i.e., RS = SR.

�� ���



Fifth Edition �.�

Solution �.�

�. The determinant is �. (Recall that cos2 ✓ + sin2 ✓ = 1.)

�. The determinant is -�.

�. The determinant is �.

Solution �.�

�. Each of the �gures below shows the basic blue rectangle and the orange rectangle, which is
the result of applying the transformation.

a)
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b)

�. It is not possible to undo these matrix transformations. Since everything is squished onto the
same line, we would not be able to distinguish the original vectors.

Notice that, in the above matrices, the �rst row is a constant multiple of the second row. In other

words, the matrix looks like


a b
ca cb

�
for some constant c. If we apply a matrix of this form to a

point in �D space reprsented by the vector

x
y

�
, then the result will be


z
cz

�
, where z = ax + by. In

other words, the resulting point will always fall on the line y = cx.

Solution �.�

�.
w = Pu =


7
17

�

�.
Qw = QPu =


2
3

�

�.

QP =


1 0
0 1

�

which is the identity matrix

�. The determinate of P is �.

�. The determinate of Q is 1
2 .
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Solution �.�
�. a)

(PB)�1 =


�17/2 7/2

5 �2

�

b)

(PT )�1 =


3/2 �2

�1/2 1

�

�. ✓
cos ✓ � sin ✓
sin ✓ cos ✓

�◆�1

=


cos ✓ sin ✓

� sin ✓ cos ✓

�

✓
�1 0
0 1

�◆�1

=


�1 0
0 1

�

✓
1 1
0 1

�◆�1

=


1 �1
0 1

�

Solution �.�
�. a) It’s not possible to �nd the numbers of oranges, apples, and pears. We have the equation


2 1 3
4 3 3

�2

4
n0

na

np

3

5 =


21
45

�
,

but we cannot take the inverse of a 2 ⇥ 3 (non-square) matrix.
b) Now we have the equation

2

4
2 1 3
4 3 3
1 1 1

3

5

2

4
n0

na

np

3

5 =

2

4
21
45
14

3

5 .

So by taking the inverse of the 3 ⇥ 3 matrix we �nd that n0 = 3, na = 9 and np = 2.

c) The determinant of the matrix is �.

�. a) The equation becomes 2

4
2 3

2
3
2

4 3 3
1 1 1

3

5

2

4
n0

na

np

3

5 =

2

4
21
45
14

3

5 .

But the matrix is not invertible, so we cannot solve for the number of fruit.
b) The determinant of the matrix is �.
c)
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Solution �.�

�. The length of the rectangle would double in the x direction and be reduced to �/� the length
in the y direction.

�. First we de�ne the corners of the rectangle as the columns in a matrix
» points=[1 1 -1 -1; 2 -2 -2 2]
and we de�ne the scaling matrix
» S=[2 0; 0 1/3]. Then we simply multiply them
» scaledpoint=S*points.
Plotting them, here is the original rectangle in blue and the scaled rectangle in orange

�. The area is reduced from � units2 to �.�� units2, or �/� of the original area.

�. To undo the process we use the inverse of the S matrix, or S�1 would be used.

S�1 =


0.5 0
0 3

�
.

You should check that S�1S = SS�1 = I.
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�. We de�ne the inverse matrix » Sinv=[0.5 0; 0 3] and check that » S*Sinv and
Sinv*S both produce the identity matrix.

�. The area of the rectangle doubles.

�. When the original rectangle is operated on with

SR

, the resulting image will be a horizontally stretched parallelogram. When the original
rectangle is operated on with RS, the resulting image will be the scaled rectangle from the
previous exercise only rotated �� degrees counter-clockwise.

�. (SR)�1 = R�1S�1 or (RS)�1 = S�1R�1

Solution �.�

�.

2

4
1 0 tx
0 1 ty
0 0 1

3

5

2

4
x
y
1

3

5 =

2

4
x + tx
y + ty

1

3

5

�. The rectangle would be moved � to the right and � up.

�. The area of the rectangle does not change.

�.

T�1 =

2

4
1 0 �2
0 1 �3
0 0 1

3

5

�. If the original rectangle is operated on by TR, the rectangle would �rst be rotated with
respect to the origin and than translated. If the original rectangle is operated on by TR, the
rectangle would �rst be translated and then rotated. As rotation happens with respect to the
origin, the � operations will not result in the same rectangle.
To undo the operation TR, the resulting �gure should be operated on by R�1T�1. To undo
the operation RT, the resulting �gure should be operated on by T�1R�1.

�. If the original rectangle is operated on with STR, the resulting image will be of the rectangle
rotated �� degrees around the origin, translated � to the right and � up and then scaled by
S. If the original rectangle is operated on with TRS, the resulting image will be the scaled
rectangle rotated �� degrees around the origin and then translated � to the right and � up.
To undo STR, the resulting �gure should be operated on by R�1T�1S�1. To undo TRS,
the resulting �gure should be operated on by S�1R�1T�1.

�. 2

664

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

3

775

2

664

x
y
z
1

3

775
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