
Chapter �
Night �: Linear Systems of Algebraic Equations

� Learning Objectives

Concepts

• Determine for a system of � or fewer unknowns whether it has a unique solution, no solution
or in�nite solutions.

• Create a set of linear equations from a narrative about how the unknown variables are related
to given data.

• Represent a system of linear equations with matrix, vector notation

• Solve a linear system of equations

MATLAB skills

• Compute the determinant of a matrix

• Solve systems of linear equations of the formAx = b using all three methods: inverse matrix,
linsolve, or backslash operator.

Suggested Approach

See Night � for suggested approaches to the assignment and list of resources.

�.� Determinants and Invertibility

You have already encountered the determinant in class: the determinant of a square matrix is a property of
the matrix which among other things indicates whether a matrix is invertible or not: if the determinant of a
square matrix is zero, it is non-invertible. As a reminder:
The determinant of a matrix G is denoted a few di�erent ways.

det(G) = |G| (�.�)

For a generic 2 ⇥ 2 matrix G

G =


a b
c d

�
,

the formula for the determinant is quite straightforward:

det(G) = ad � bc (�.�)
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For example, for the following 2 ⇥ 2 matrix,

det
✓

1 2
3 4

�◆
=

����
1 2
3 4

����

= (1)(4) � (2)(3) = �2 (�.�)

You already considered the determinant of some transformation matrices, now let’s consider what the
determinant is really telling us about a general matrix.

Exercise �.�

�. Let A be a 2 ⇥ 2 matrix

A =


x1 x2

y1 y2

�
.

We can think of the columns of A as two vectors beginning at the origin and ending at the
points (x1, y1) and (x2, y2), respectively. These vectors form a parallelogram, as shown here:

x

y

(x2,y2)

(x1,y1)

Show that the magnitude (i.e., absolute value) of det(A) is equal to the area of a parallelogram
formed by the column vectors of the matrix A.

�. What is the determinant of A if its column vectors are on the same line? Graphically, what
happens to the parallelogram?

From this, you should get the feeling for the fact that the determinant is a measure of how co-linear the
columns of A are: or in other words, how linearly independent the two columns are. The determinant
therefore lets us know quickly if a linear system of algebraic equations has a solution, as illustrated in the
following example.

Exercise �.�
Consider the following matrix whose columns lie on the same line: the second column is simply
twice the �rst column.

A =


1 2
2 4

�
(�.�)

�� ���



Fifth Edition �.�

�. What is det(A)?

�. Find all the solutions to Ax = 0.

�. For which vectors b does Ax = b have a solution? Why are there only certain b vectors that
lead to solutions to Ax = b?

While the formula for the determinant of a 2 ⇥ 2 matrix is quite straightforward, the procedures for
computing the determinant of larger matrices is more di�cult, but they are well known and well documented.
Fortunately, MATLAB has the det function which computes the determinant.

�.� Linear Systems of Algebraic Equations: Formulation and Definition

In previous classes, you’ve encountered a bunch of exercises where you had to operate on a vector to �nd
another vector:

Ax = b, (�.�)

where A and x were known, and your job was to �nd b. While this is fun and, as you saw above in the
rectangle exercise, can be useful, there is another related problem which is easily as important. It involves
the same equation, but now you know A and b and need to �nd the vector x. As we will discuss here, this
problem captures the concept of a Linear System of Algebraic Equations.
One key idea in building models is the step of abstraction: going from some real-world situation to an

abstracted model for the system (e.g., a set of di�erential equations). There are two important aspects of
building such a model: �rst, deciding what to include or ignore, and second, deciding how to mathematically
represent those things you choose to include.
One particularly common kind of mathematical framing is a set of linear algebraic equations, which

can be represented by a matrix equation. A general system of m linear algebraic equations in n unknown
variables x1, x2, . . . , xn takes the form

a11x1 + a12x2 + a13x3 + . . . + a1nxn = b1

a21x1 + a22x2 + a23x3 + . . . + a2nxn = b2

. . . = . . .

am1x1 + am2x2 + am3x3 + . . . + amnxn = bm

where a11, a12, . . . , amn are known as coe�cients and b1, b2, b3, . . . , bm are constants. We can write this
using matrices and vectors in the form

Ax = b
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where A is the m ⇥ n coe�cient matrix, x is the n ⇥ 1 unknown vector, and b is a m ⇥ 1 constant vector
which is known. In other words,

A =

2

64
a11 a12 · · · a1n
...

...
. . .

...
am1 am2 · · · amn

3

75 x =

2

6664

x1

x2
...

xn

3

7775
b =

2

6664

b1
b2
...

bm

3

7775
.

Note that “linear” here means linear in terms of the unknown variables, e.g., if x is an unknown there are
only terms like ax, and no terms like sin(x), x2, 1/x, etc. It is often the case that you might have coe�cients
that appear to be non-linear; for example, in solving physics problems, you might have coe�cients that
depended on trig functions of angles, such as (L cos ✓)Fx, which is is linear in Fx but not linear in ✓). Be
careful to be clear about what you’re solving for when you decide whether something is linear or non-linear.

�.� Using Matrix Inverses to Solve Linear Systems

Over the last week, you have worked with rotation matrices, and transformations that were compositions
of simpler rotations, and learned how to invert them. When you multiply a vector by any matrix (not just
ones that are associated with simple spatial transformations), you transform the original vector x into a
new vector b.

Ax = b

More generally (than rotations), you can often undo the linear transformation (just like you did with the
rotation matrix). Undoing this linear transformation is a linear transformation itself! Therefore the act of
undoing a linear transformation can be formulated with a matrix multiply.

A�1Ax = A�1b

) x = A�1b

This reduces our linear system of algebraic equations problem to the problem of �nding the inverse of
our matrix A. Note this is only possible if A is square and invertible.

When solving a system of equations, at least half of the battle is typically getting your system abstracted
to the point that it can be thought of as a system of linear equations. The following are a set of problems.
You don’t need to solve these problems – you just need to formulate them as linear algebra problems.

An Investment Example

In this section we will focus on deciding whether and how you can abstract the system to a mathematical
model that can be written as a matrix equation.

Exercise �.�
Suppose that the following table describes the stock holdings of three of the QEA instructors. Also
suppose that on a given day the value of the Apple, IBM and General Mill’s stock are $���, $�� and
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$�� respectively.

Apple IBM General Mills
Je� ��� ��� ���

Emily ��� ��� �
John �� �� ���

�. Here’s your �rst linear algebra formulation question: What is the total value of the holdings for
each professor on the day in question? Can you formulate this as a matrix expression? If so,
what is it? If not, why not?

�. Now, suppose that you do not know how many shares of each stock are owned by the
instructors. However, you know that the total value of the stocks for each instructor for three
consecutive days is as given in the following table

Je� Emily John
Day � $���� $���� $���
Day � $���� $���� $����
Day � $���� $���� $����

You also know that the price of each stock on each of the three days was as follows:

Apple IBM General Mills
Day � $��� $�� $��
Day � $��� $�� $��
Day � $��� $�� $��

Now here’s the second formulation question: how many stocks of each company does each pro-
fessor own? Can you formulate this as a matrix equation? If so, what are the matrices/vectors?
If not, why not?

An Electrical Example

Remembering your circuit analysis back from ISIM, recall that Kirkho�’s laws:

• Kirkho�’s Voltage Law says that the sum of all the voltage drops around any loop of a circuit must
sum to zero. (Batteries contribute a voltage increase of V , resistors contribute a voltage drop of IR.)

• Kirkho�’s Current Law says that the sum of all current going into and out of any junction of wires in
the circuit must be zero.
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Exercise �.�
In the following circuit, consider that there is a current I1 going through resistor R1, a current
I2 going through resistor R2 and a current I3 going through resistor R3. Find a linear algebra
expression for the vector of our three unknown currents.

�.� Types of Linear Systems and Types of Solutions

Consider the linear system of algebraic equations expressed in matrix-vector form as,

Ax = b.

If b = 0 the system of linear algebraic equations is homogeneous and if b 6= 0 the system is non-
homogeneous. As mentioned before, we’ve already dealt with systems like this before when we were
transforming geometrical objects, but in that case we already knew x and we were simply multiplying by A
in order to get b. Here, we are considering the so-called inverse problem, and trying to �nd x given A and
b. However, let’s back up and consider some small examples to explore the solution possibilities a little.

Elimination of Variables

In high school you probably learned some basic techniques for solving small linear systems of algebraic
equations. Consider the following linear system of algebraic equations,

2x1 + 3x2 = 6 (�.�)
4x1 + 9x2 = 15 (�.�)
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The basic technique, called elimination of Variables, proceeds as follows: First, solve equation (�) for x1

x1 = 3 � 3

2
x2 (�.�)

Now substitute this expression for x1 into equation (�)

4(3 � 3

2
x2) + 9x2 = 15

Now we simplify this equation

12 � 6x2 + 9x2 = 15

) 3x2 = 3

and solve for x2 to give x2 = 1. Now we substitute this solution back into equation (�) or (�) to determine

x1 = 3
2 . The original linear system of algebraic equations therefore has a unique solution, x =


1

3/2

�
.

However, not all linear systems of algebraic equations have a unique solution. For example, the system

x1 + 2x2 = 1 (�.�)
2x1 + 4x2 = 2 (�.��)

has an in�nite number of solutions because equation (�) is just a multiple of equation (�). Solving equation
(�) for x1 gives

x1 = 1 � 2x2

and choosing an arbitrary value of x2 = ↵ gives

x1 = 1 � 2↵

x2 = ↵

or in vector form
x =


1
0

�
+ ↵


�2
1

�

This de�nes an in�nite number of solutions since ↵ is any real number. What do you notice about each
part of this vector?
It’s also possible that a linear system of algebraic equations has no solution. For example, the system

x1 + 2x2 = 1 (�.��)
2x1 + 4x2 = 1 (�.��)

has no solution. Solving equation (�) for x2 gives

x2 =
1

4
� 1

2
x1

and replacing into equation (�) gives

x1 + 2(
1

4
� 1

2
x1) = 1
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which on simpli�cation gives
1

2
= 1

which hopefully we all agree is incorrect. We assumed that there was a solution, performed elimination and
substitution and found a statement that contradicts our assumption: no solution therefore exists.

Exercise �.�

�. Using the technique of elimination of variables described above, determine which values of h
and k result in the following system of linear algebraic equations having (a) no solution, (b) a
unique solution, and (c) in�nitely many solutions?

x1 + hx2 = 1

2x1 + 3x2 = k

�. Using the technique of elimination of variables described above, determine whether the
following linear systems of algebraic equations have zero, one, or in�nitely many solutions.
If solution(s) exist, determine the actual solution(s).

a)

x1 + x2 + x3 = 6

x2 + x3 = 2

x1 � 2x3 = 4

b)

x1 + x2 + x3 = �6

2x1 + x2 � x3 = 18

x1 � 2x3 = 4

c)

x1 + x2 + x3 = 6

2x1 + x2 � x3 = 10

x1 � 2x3 = 4
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Solving a linear system of algebraic equations in MATLAB

Exercise �.�
In the last class, you worked with an example of fruits in your refrigerator, and we asked you
questions like how to calculate the total weight of the fruits, how many fruits there are, etc. We can
use matrix operations to calculate inverse problems as well, as this question illustrates. Suppose that
you know that you have apples and oranges in the fridge and that in the genetically engineered
future, the weights of all apples are �oz and all oranges are �oz. Because of in�ation in this genetically
engineered future, the price of each apple is $� and the price of each orange is $�. Suppose that you
also know that you paid $�� total for your fruit and the total weight of the fruit is �� oz. We can use
this information and tools we have developed to �gure out how many apples and oranges we have.
Let no and na be the numbers of oranges and apples in your fridge respectively, and that you don’t
know what these numbers are. De�ne the following vectors

n =


no

na

�
(�.��)

d =


13
33

�
(�.��)

�. Write an equation relating n and d, using a matrix-vector product.

�. Calculate how many oranges and apples you have.

�. Why this kind of problem is often called an inverse problem?

Exercise �.�
�. Consider the example with the fruits that you worked out earlier. Now, in addition to apples

and oranges, suppose you also had an unknown number of pears which each weigh � oz, and
cost $�. Additionally, suppose that the total weight of the fruits is �� oz, and you paid a total
of $�� for the fruit.

a) If possible �nd the numbers of oranges, apples and pears. If not, please explain why.
b) Suppose that you additionally know that you have a total of �� fruits. Can you formulate

and solve a matrix-vector equation to �nd out the numbers of oranges, apples and pears
you have?

c) What is the determinant of the matrix you have set up to solve this?

�. The fruit vendors bought the pricing algorithm from Uber. Oranges are still $�, pears are
now only $�.��, and (due to an in�ux of teachers) apples are now surging at $�.�� each. Their
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weights stay the same. You return to the market, and again purchase �� fruits, which have
the same total weight and total cost.

a) Can you formulate and solve a matrix-vector equation to �nd out the numbers of oranges,
apples and pears you have?

b) What is the determinant of the matrix you have set up to solve this?

�. Recall the example with fruits from class: Suppose that you have a total number of �� apples,
oranges and pears in your fridge. Suppose that each apple costs $�, each orange costs $ � and
each pear costs $�. Assume also that the weights of every apple is � oz, every orange is � oz
and every pear is � oz. Additionally, suppose that the total weight of the fruits is �� oz, and
you paid a total of $�� for the fruit.

a) Formulate (or look up your formulation from class) and write down (but don’t solve it
yet) a matrix-vector equation to �nd out the numbers of oranges, apples and pears you
have.

b) Solve this equation to �nd the numbers of apples, oranges and pears using the following
approaches (they will of course give you the same results, but we want you to get familiar
with using the di�erent operations here).
i. Using MATLAB, compute the inverse of the matrix in part a and use it to �nd the
numbers of apples, oranges and pears.

ii. Use MATLAB’s linsolve function to �nd the numbers of apples, oranges and
pears.

iii. Use MATLAB’s \ operator to �nd the numbers of apples, oranges and pears.

�.� Conceptual�iz

�. Select the matrices which are invertible.

a)

2 3
1 4

�

b)

1 0
1 0

�

c)

0 0
0 0

�

d)

1 2
4 8

�

e)

"
1p
2

1p
2

1p
2

1p
2

#
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�. Let (a, b, c) be the point of interesection for the following three planes, pictured below:

z = 2 � x � y

z = (31 � 6x + 4y)/5

z = (13 � 5x � 2y)/2

What is a?

�. How many solutions does the following system of equations have?

x + y = 9

x � z = 2

y + z = 7

A. Zero
B. One
C. Two
D. In�nitely many

�. What is the area of a parallelogram whose vertices are (0, 0), (2, 4), (5, 1) and (7, 5)?

�. Solve the following system of linear equations

x � y = 2

3x + z = 11

y � 2z = �3

What is the value of y?
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Solution �.�

�.

�.

�. The determinant is equal to �, or det(A)=�.

Solution �.�

�. det(A)=(�)(�)-(�)(�)=�

�. There are in�nitely many solutions of the form �x1 = 2x2.

�. Solutions are of the form b =


k
2k

�
where k is a constant.

Solution �.�

�. This can be formulated as Ax = b where

A =

2

4
100 100 100
100 200 0
50 50 200

3

5 , x =

2

4
100
50
20

3

5 , and b =

2

4
djd

det

djg

3

5 .

Doing the matrix multiplication shows that Je� has djd = 17000, Emily has det = 20000,
and John has djg = 11500.

�. There are several ways to do this. Perhaps the simplest is to compute each person’s stock
holding individually. To do this, we let A be a matrix with the stock prices

A =

2

4
100 50 20
110 50 22
100 40 30

3

5 ,

let bjd be a vector representing the value of Je�’s stocks on each day,

bjd =

2

4
1500
1600
1400

3

5 ,
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and let xjd be a vector representing Je�’s stock holdings (i.e., the �rst entry tells us how
many stocks of Apple he has, the second entry is IBM, and the third is General Mills). This
gives the equation Axjd = bjd. By inverting A we can solve for xjd. Then we repeat this
procedure for each of the other instructors.
But... we can do it quicker! Form a 3 ⇥ 3 matrix X whose columns are made the vectors
xjd,xet, and xjg . Then form a 3 ⇥ 3 matrix B whose columns are made of the vectors
bjd,bet, and bjg . This gives the equation AX = B. Inverting A, we can solve for X:

Je� Emily John
Apple �� �� �
IBM �� �� �

General Mills � � ��

Solution �.�
2

4
R1 0 R3

0 �R2 R3

1 �1 �1

3

5

2

4
I1
I2
I3

3

5 =

2

4
v
0
0

3

5

Solution �.�

�. Rearrange the equations to linear form y = mx + b. If the lines are identical, there are
in�nitely many solutions; if the lines are parallel, but don’t overlap, there are zero solutions;
if the lines are not parallel, there is one solution.

a) h=�/�, k 6=�,
b) h6=�/�,
c) h=�/�, k=�

�. a) x =

2

4
4
2
0

3

5

b) No Solution
c) In�nite Solutions

Solution �.�

�.

2 1
4 3

� 
no

na

�
=


13
33

�

�.

no

na

�
=


3
7

�

�. In this case we know the result b, and are working backwards to �nd the number of apples
and oranges. We also use a matrix inverse to �nd the result.
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Solution �.�
�. a) No, you have three unknowns and only two equations.

b) Yes, you now have three equations and three unknowns.
2

4
2 1 3
4 3 3
1 1 1

3

5

2

4
no

na

np

3

5 =

2

4
21
45
14

3

5

2

4
no

na

np

3

5 =

2

4
3
9
2

3

5

c) det(A) = 2

�. a) 2

4
2 1.50 1.50
4 3 3
1 1 1

3

5

2

4
no

na

np

3

5 =

2

4
21
45
14

3

5

This forumation cannot be solved because A is not invertible.
b) det(A) = 0

�. a) 2

4
2 1 3
4 3 3
1 1 1

3

5

2

4
no

na

np

3

5 =

2

4
21
45
14

3

5

b) i. 2

4
no

na

np

3

5 =

2

4
3
9
2

3

5

ii. 2

4
no

na

np

3

5 =

2

4
3
9
2

3

5

iii. 2

4
no

na

np

3

5 =

2

4
3
9
2

3

5
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