Chapter 10
Night 5

¢ Learning Objectives

Concepts
« Describe the physical significance of the mean and standard deviation of a data set.

« Describe the physical significance of correlation, anti-correlation or non-correlation of two
variables.

« Approximate the mean and standard deviation from a histogram of the data.

« Interpret the meaning of a pair of images that has a Pearson Correlation Coefficient of: about
0; OI 0.5; OI 0.9.

« Interpret the physical/mathematical meaning of the diagonal and off-diagonal elements in
a 2 x 2 correlation matrix, C = ATA, if given the equation for the Pearson Correlation
Coefficient.

MATLAB skills
« Compute the dot product of two vectors

« Set up the appropriate matrices to compute the correlation coefficient between two variables.

10.1 Correlation

Now let’s consider that we measure two different associated quantities and want to test whether these are
linearly correlated (if one goes up, the other also goes up), anti-correlated (if one goes up the other goes
down) or uncorrelated (the behavior of one cannot be predicted by watching the behavior of the other).
(Please note that correlation has nothing to do with causality!). There are many different measures of
correlation, but we will discuss here one of the most common, the Pearson Correlation Coefficient.

For a pair of associated datasets X = {z;} and Y = {y;}, each with n elements, we define the Pearson
Correlation Coeflicient to be:

. 27:1(% — pha) (Yi — Hy)
p(X,Y) = (N~ T)ouo, (10.1)
where fiz, [1,, 0, and o, are the means and standard deviations of the datasets. Essentially, for each pair of
values, we take the product of the variations from the mean, then sum these products up over all pairs of
values and normalize by the expected variation as characterized by the standard deviation. If the two values
are consistently always on the same side of the mean, then each term in the sum will contribute positively,
and the total value will be close to one, indicating positive correlation. If the two values are consistently on
the opposite sides of the mean, then each term in the sum will contribute negatives, and the total value will
be close to negative one, indicating anticorrelation. If, for every pair, it is just as likely that the two values
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will be on opposite sides of the mean as on the same side of the mean, then the sum will go to zero, and the
two values are uncorrelated.
Consider the following data:

A B C D E [ G H 1 J
3 Poverty _Infant Mort White Crime Doctors _Traf Deaths _ University Unemployed Income
4 | Alabama 157 9.0 710 448 2182 181 220 5.0 42,666
5 Alaska 84 69 706 661 2285 163 27.3 6.7 68,460
6 |Arizona 147 6.4 86.5 483 209.7 169 251 55 50,958
7 Arkansas 17.3 85 808 529 203.4 196 1838 5.1 38,815
8 california 133 5.0 76.6 523 2687 121 296 7.2 61,021
9 |colorado 114 57 89.7 348 259.7 114 356 49 56,993
10 | Connecticut 93 62 843 256 376.4 086 356 5.7 68,595
11 Delaware 100 83 743 689 2509 123 275 48 57,989
12 |Florida 132 73 798 723 2479 156 258 62 47,778
13 Georgia 147 8.1 65.4 493 217.4 1.46 275 6.2 50,861
14 Hawaii 9.1 56 297 273 317.0 133 291 39 67,214
15 | Idaho 126 68 946 239 1688 1.60 240 a9 47,576

Exercise 10.1
1. Look over the data. By eye, which columns look correlated? Anticorrelated? Uncorrelated?

2. Choose your two favorite columns of data from this dataset. Input these into vectors in Matlab.
For each of these vectors, subtract off the mean, and then divide out the standard deviation.

3. With these vectors, how would you directly compute the correlation coefficient between
them? Go ahead and do this in MATLAB, and reflect on your result.

A note of warning. Correlation does not imply causation.

Exercise 10.2

To drive this point home, visit the Spurious Correlation Website. Follow the link at the bottom of
the site to discover and plot a spurious correlation of your very own.

10.2 Correlation: The Idea, the Math, and the MATLAB

Here we are going to consider a matrix like the one you constructed above, based on the datasets, which has
elements of the correlation coefficients. Let’s first consider a matrix B which has the datasets as columns:

T1 WY1
B-— T2 Y2
T3 Y3
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If we subtract out the means and divide out the standard deviation and a factor of square root of N — 1, we

get the matrix A:

T1—py Yi1—Hy

Og Ty
1 T2 — g Y2—Hy
Ox gy

N _ 1 T3 —Hax Y3 —Hy

O oy

where (i, ity and 0, 0, are the mean and standard deviations of each column, and N is the number of
samples (rows). Now we can write the correlation matrix as C = A™ A which has elements of the self and

cross correlations between the datasets.

correlation matrix look like?

Make a prediction, and try it out.

Exercise 10.3

1. Before we start to use this idea, let’s think through it a bit...

a) What is the size of the matrix C?
b) What are the elements on the diagonal of this matrix?

c) What are the elements of the off-diagonal? What is element C2 of this matrix? What is
element Cy;? What do you notice? Is this always going to be true? What about if we
had three datasets? What can you say about the elements C3 vs Cs;?

d) If you create a data matrix that has completely identical columns of data, what should
the correlation matrix look like?

e) If you create a data matrix that has completely uncorrelated datasets, what should the

2. Now let’s actually implement this. For the sake of getting you more comfortable manipulating
matrices in MATLAB, do the following at the command line, and see if you can predict what
each term will do before you type it in. For each command, explain what MATLAB is doing.

= [(1:10)’,rand(10,1)]

Ly

>> a

>> 0 = ones(size(a,1),

>> m = o*mean(a)

>> s = o*std(a)

>> b = (a-m)./s

>> c=(1/(size(a,1)-1))*b’*b

3. What would happen if you used this matrix for a instead:

>> a = [(1:10)°,(1:10)’/2 -(1:10)’ ]

4. Now learn how to use the MATLAB function corrcoef, which will compute the correlation
coeflicients using the original matrix.

N
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10.3 From Data to Dimensions

Thus far we’ve made a distinction between vectors as representing points in space, and vectors as repre-
senting data (e.g., a list of intensity values for pixels). But if you wanted to, there’s no reason you couldn’t
think of a vector of n data points as representing a point in n dimensional space (and, in fact, it would be
very powerful to). If you did this, you could define all kinds of interesting things. For example, you could
ask about the magnitude of the vector (i.e., the size of a data point), the distance from one vector (i.e., data
point) to another, the dot product of two vectors (i.e., data points), etc.

Exercise 10.4
1. As a thought experiment, think about the following questions.
a) Imagine you have grayscale images that are 100 x 100 pixels. If you represent each
image as a vector, how large is the vector space?

b) If the intensity of pixel i is a;;, come up with an expression for the magnitude of the
vector that describes the image a.

c) Come up with an expression that represents the distance between images a and b.

d) What does a’b tell you? What vector operation is this?

2. Now that you’ve thought through this about, load three face images, and calculate the distance
between each pair (i.e., take the difference between the two images, square each element,
then sum up all the squared elements and take the square root of the sum). Do your answers
make sense?

10.4 Correlation in Facial Recognition

Kinds of Correlation in an Image Set

If we think about pictures now, we can think about two different correlations: the correlation between a
given pair of pixels (across all the pictures in a data set), and the correlation between pictures (across all the
pixels in those images). In order to compute an accurate correlation coefficient, you need to have multiple
data points in each set being correlated, e.g., many pixels in each picture being correlated, or many pictures
across which a pair of pixels (pixel locations) can be correlated.

Think about what each of these correlations means. What would a high correlation between a given pair
of images mean? What about a high correlation between a given pair of pixels (e.g., the upper-left-most
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pixel and the upper-right-most pixel)? It might help to open a few face images or draw some face sketches
to think about.

Exercise 10.5

Consider six grayscale pictures, each with a resolution of m x n pixels.
1. What is the size of the data matrix containing these six pictures as the columns?

2. What is the expression for the correlation matrix between the pictures? What size is this
correlation matrix?

3. What is the expression for the correlation matrix between different pixels? Pay careful
attention to the mean and standard deviation you are using. What is the size of this correlation
matrix?

4. People’s faces are approximately left-right symmetric. How would you expect this to affect
the entries in the correlation matrix between different pixels?

Test your understanding...

« Pull in six images from the class data matrix (test_images variable in face_bases.mat
file) and put them in a variable called faces. Each of these images should come from different
people - there are 8 images per person stored in the data matrix.

+ Use the resample command to bring them down to a smaller resolution (e.g., 25 x 25) using
dfaces = imresize(faces, [25 25]);
his should be a 25 x 25 x 6 matrix.

« Now reshape them appropriately to create a matrix in which each column is a (reshaped) face using
rdfaces = reshape(dfaces,size(dfaces,1) * size(dfaces,2),size(dfaces,3));

Exercise 10.6
1. Find the correlation between six different images. Which images have the highest correlation?

2. Now find the correlation between pixels across images. Try taking a single column of this
matrix and reshape that column into an image. What does that image tell you? You may want
to repeat this reshape and visualization for columns 1, 25, 400, and 625 to get a feel for what
is happening.
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10.5 Diagnostic Quiz

Please see Canvas for the questions.
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Solution 10.3
1. a) Since A has size N x 2, we know A7 has size 2 x N. Then C = AT A has size 2 x 2.
b) Each element of the diagonal will be 1.

c) The elements C12 = Co; is the correlation between the two columns of data. Regardless
of size, the correlation matrix will be symmetric.

d) If the data matrix had identical columns of data, the correction matrix would be all 1s.

e) If the data is uncorrelated, the off-diagonal entries in the correlation matrix will be all
0s, so it will be the identity matrix. (Note: real data is unlikely to have o correlation, just
by accident, so it will just have numbers that are close to o.)

2. You should end up with a correlation matrix between the two columns of a.

3. Again, you end up with a correlation matrix between the two columns of a, but since the

numbers are non-random and negatively correlated, you get the matrix ¢ = {11 _11] .

4. You should use “help” or “doc” to find information on how to use this function.

Solution 10.4

1. Each pixel is represented by a number. So the vector representing an image has 10000 entries
and thus lives in 10000-dimensional space.

2. The magnitude of the vector is given by

1/2

laf = (> _a,
i

3. The distance between two images a and b is given by
1/2

la=bll =D (ai; —bi;)’

.3

4. The dot product a”'b tells you how similar the two vectors are.

Solution 10.5

1. Each picture is represented by mn data points. So the data matrix containing these six pictures
as columns is mn x 6.

2. To find the correlation we can either use the MATLAB code from Exercise 10.3 or the command
corrcoef. The correlation matrix will be 6 x 6.
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3. To find the correlation between pixels, we need to take the transpose of our data matrix. This
new data matrix will be 6 X mn, since we have mn variables (each pixel) and 6 observations
(within in picture). The correlation matrix will then be mn x mn.

4. High correlation between pixels equidistant from centerline.

Solution 10.6

1. To find the correlation matrix between the six images, enter
» corrcoef (rdfaces).

2. To find the correlation across pixels, enter
» pixels=corrcoef (transpose(rdfaces)) ;. We can reshape the first column
of this matrix and convert it into an image using
» pixelsl=reshape(pixels(:,1),25,25);
» imagesc(pixelsl).
The (7, j) entry of this image tells us how similar the top-left pixel is to the (4, j) pixel. (Note:
the pixels are “numbered” 1-625 going down the first column, then down the second column,
and so on.) Repeating this reshape and visualization procedure on column 400 will give you
the correlation between pixel 400 and each of the other pixels, for example.
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