
Chapter ��
Night �: Eigenvalues and Eigenvectors

� Learning Objectives

Concepts

• Compute the eigenvalues and eigenvectors of a 2 ⇥ 2 matrix by hand

• Compute the eigenvalues and eigenvectors of an n ⇥ n matrix using MATLAB

• Describe the geometric meaning of eigenvalues and eigenvectors

• Use eigenvectors to compute and interpret directions of variation in data

MATLAB skills

• Compute the eigenvectors and eigenvalues of a given matrix

• From a given dataset, set up the relevant matrices and compute the covariance matrix of the
dataset.

What is this about?

The big ideas of this assignment are eigenvectors and eigenvalues. Recall that when you multiply a vector
by a matrix, the resulting vector usually points in a di�erent direction. An eigenvector of a square matrix is
a vector which does not change direction when multiplied by that matrix. It can only change in length.
The eigenvalue corresponding to this eigenvector is the scale factor that is applied to that eigenvector as a
result of the matrix multiplication. Therefore, the eigenvector of a matrix points in a special direction – its
a direction that is not modi�ed by the linear transformation associated with that matrix. This is an idea
that we will keep coming back to in a number of di�erent ways throughout QEA (including next semester).
The ideas contained here can be applied in many ways (many of which we won’t get to until next semester)
such as

• Directions of greatest variation in data.

• Natural co-ordinates of systems.

• Frequency response of �lters.

• Analysis of dynamical systems.

Reference Material

• Eigenvalues and Eigenvectors by �Blue�Brown (watch �rst �� mins)

• Paul’s Online Notes. Review : Eigenvalues and Eigenvectors

• Intro to eigenvectors by PatrickJMT

��� ���

https://www.youtube.com/watch?v=PFDu9oVAE-g
http://tutorial.math.lamar.edu/Classes/DE/LA_Eigen.aspx
https://www.youtube.com/watch?v=G4N8vJpf7hM
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• Calculating eigenvalues and eigenvectors of a 2 ⇥ 2 matrix by PatrickJMT.

��.� Calculating Eigenvalues and Eigenvectors of Matrices

Recall from class that � is an eigenvalue of a matrix A with corresponding eigenvector v if Av = �v.
Geometrically, this means that the matrix A doesn’t change the direction of v, it simply scales it by a factor
of �.

Given a square matrix, how can we �nd its eigenvalues and eigenvectors? In class, we calculated these by
hand for the special case of diagonal matrices, and now we will move to generic 2 ⇥ 2 matrices. For general
square matrices which are larger than 2 ⇥ 2, we will use MATLAB’s eig to compute the eigenvalues and
eigenvectors.

Finding eigenvalues

So far we’ve dealt with matrices for which it is possible to think your way to the eigenvalues. For general
matrices, this is rarely the case, and we need a method that is foolproof. The method most widely adopted
involves the determination of an algebraic equation for the eigenvalues, usually known as the characteristic
equation. For this reason, eigenvalues are often known as characteristic values.
Let’s start with an example. Consider the matrix

A =


18 �2
12 7

�

The de�nition of an eigenvalue and eigenvector imply that we are seeking � and v which satisfy

Av = �v.

We subtract �v from both sides
Av � �v = 0

and then factor the left hand side to give

(A � �I)v = 0

For this example we have

A � �I =


18 � � �2

12 7 � �

�
.

We are only interested in v that are nonzero, i.e., v is not the vector of all zeroes. (This is because v = 0
is always a solution toAv = �v for anyA and any �, so it’s not very interesting or informative.) Assuming
v is nonzero implies that the matrix (A � �I) is not invertible. Why? If (A � �I) were invertible, then we
could rearrange the equation to get

v = (A � �I)�10 = 0

which contradicts our assumption that v 6= 0. THerefore, (A � �I) is not invertible.
Since (A � �I) is not invertible, it must have determinant zero. In other words,

det(A � �I) = 0.

��� ���

https://www.youtube.com/watch?v=IdsV0RaC9jM
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In our example, this implies that

det(A � �I) = (18 � �)(7 � �) + 24 = 0.

This is called the characteristic equation:

(18 � �)(7 � �) + 24 = 0

or, rearranged,
�2 � 25� + 150 = 0.

The characteristic equation is a polynomial with the variable � that arises by setting the determinant of
(A � �I) equal to zero. The solutions to this polynomial give the eigenvalues �. In our example, the
polynomial can be factored

(� � 15)(� � 10) = 0

so that gives eigenvalues �1 = 10 and �2 = 15. (We could use the quadratic formula if necessary.)
Let’s retrace our steps: If � is either �� or ��, then the determinant of (A � �I) is zero. This implies

that (A � �I) is not invertible, so we can look for nonzero solutions v to (A � �I)v = 0 and those v are
eigenvectors associated to the eigenvalue �.
In summary, here’s the general procedure for �nding the eigenvalues of a matrix:

�. Rearrange Av = �v to get (A � �I) = 0.

�. Compute the determinant of (A � �I).

�. Since the matrix is not invertible, we set that determinant equal to zero: det(A � �I) = 0. This gives
a polynomial in �, known as the characteristic equation.

�. Solve the polynomial for the roots �. Those are the eigenvalues.

Exercise ��.�

�. You already know that the eigenvalues of a diagonal matrix are just the entries on the diagonal.
Using the above procedure, con�rm that

A =


2 0
0 �3

�

has eigenvalues �1 = 2 and �2 = �3.

�. Notice that one of the eigenvalues is positive and one is negative. The eigenvector associated

with �1 = 2 is v1 =


1
0

�
and the eigenvector associated with �2 = �3 is v2 =


0
1

�
. Plot

v1,v2,Av1 and Av2. What a�ect does the negative sign in the eigenvalue have? In other
words, what is the di�erence between a negative and positive eigenvalue?

��� ���
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It’s worth noting that eigenvalues come in more �avors than positive or negative. They can also be
complex numbers. For now, will focus on matrices with real eigenvalues, but if you’re curious about the
complex case, you can learn about it in this worksheet (ignore the �rst page).

Eigenvalues in terms of the trace and determinant

The steps we took just in the previous sections will work for any matrix, so let’s apply it to the most general
2 ⇥ 2 matrix

A =


a b
c d

�

Again we seek � and v so that
Av = �v

or equivalently
(A � �I)v = 0

Non-zero solutions for v exist when
det(A � �I) = 0

so in the general case the characteristic equation is

(a � �)(d � �) � bc = 0

Expanding and simplifying gives

�2 � (a + d)� + (ad � bc) = 0

which is a second-order polynomial in � with two coe�cients. Notice that the last one is just det(A) and
the middle one involves the sum of the diagonal entries of A, which is known as the trace of A or tr(A)
for short. The characteristic equation is therefore

�2 � tr(A)� + det(A) = 0

Finally, let’s consider the solutions of the characteristic equation for a �x� matrix. Using the quadratic
formula we have

� =
tr(A) ±

p
tr(A)2 � 4det(A)

2

If you recall all the work you did in school with the solutions to the quadratic, you will notice that there are
two solutions as expected, one for each eigenvalue. Furthermore, the solutions may be complex if

tr(A)2 � 4det(A) < 0.

Exercise ��.�
Determine the trace and determinant of the following �x� matrices and then write down the

��� ���

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=17&cad=rja&uact=8&ved=2ahUKEwiX1J_x8cTnAhULxVkKHd2GBAQ4ChAWMAZ6BAgEEAE&url=https://canvas.harvard.edu/files/5645480/download?download_frd=1&usg=AOvVaw3YkWN7j8kjPcIgHW4GaRH3
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corresponding characteristic equation. Solve the characteristic equation to �nd the eigenvalues.

�.
A =


1 2
2 1

�

�.
A =


1 2
3 2

�

Exercise ��.�
Optional problem if you’re interested in further exploring the relationship between the trace,
determinant, and eigenvalues.

�. Use the solutions of the characteristic equation to prove that �1 + �2 = tr(A).

�. Use the solutions of the characteristic equation to prove that �1�2 = det(A).

�. Use the solutions of the characteristic equation to prove that the eigenvalues of a symmetric
2 ⇥ 2 matrix are real.

Finding Eigenvectors

In the example in the previous section, we discovered that the eigenvalues of

A =


18 �2
12 7

�

are �1 = 10 and �2 = 15. How do we �nd the corresponding eigenvectors v1 and v2?
First, let’s �nd the eigenvector corresponding to �1 = 10. Remember that we knew �1 was an eigenvalue

because it solved the characteristic equation, i.e., det(A � �1I) = 0. This is important because it implies
(A � �1I) is non-invertible, and therefore, there exists a nonzero vector v1 such that (A � �1I)v1 = 0.
But it’s not enough just to know that such a vector exists, we want to know exactly what it is.
In our running example, this means we are looking for v1 such that

(A � �1I)v1 =


18 � 10 �2

12 7 � 10

�
v1 =


8 �2
12 �3

�
v1 = 0.

Let’s write v1 in terms of its components

v1 =


a
b

�
,

��� ���
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to get the equation 
8 �2
12 �3

� 
a
b

�
=


0
0

�
.

This gives us two equations
8a � 2b = 0 and 12a � 3b = 0.

But these equations provide the same information: they both imply that b = 4a. This is because (A��1I) is
not invertible, so the rows are linear dependent. The system of linear equations implied by (A��1I)v1 = 0

has in�nitely many solutions of the form


a
4a

�
for any a. Letting a = 1, we get v1 =


1
4

�
.

If we let a = 5, we would have the eigenvector


5
20

�
. This hints at an important fact about eigenvectors:

we only care about an eigenvector’s direction, not its length. So we could have chosen v1 to be any vector

pointing the same direction as

1
4

�
(such as


5
20

�
or


�2
�8

�
). We often speak about “the” eigenvector

corresponding to an eigenvalue, but only the direction of the eigenvector is unique, not the length.

Exercise ��.�
Using the basic eigenvalue/eigenvector equation

Av = �v

show that if v is an eigenvector for �, then cv is also an eigenvector for �, where c is any constant.

Exercise ��.�
We can always check that �1 and v1 are the corresponding eigenvalue and eigenvector for the
matrix A by plugging them into the equation Av1 = �1v1 and verifying that it holds.

Use this procedure to check that �1 = 10 and v1 =


1
4

�
are the corresponding eigenvalue and

eigenvector for A =


18 �2
12 7

�
.

Exercise ��.�

��� ���
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Continuing the example above, with

A =


18 �2
12 7

�

�nd the eigenvector that corresponds to the eigenvalue �2 = 15.

More Eigen-stu�

Exercise ��.�
Determine the eigenvalues and eigenvectors of the following �x� matrices.

�.
A =


4 2
1 3

�

�.
A =


1 2
3 2

�

Exercise ��.�
We have two vectors,

n =


�1
1

�
(��.�)

but

z =


�1
1.01

�
(��.�)

In other words, the vectors n and z point in a very similar direction, but are not perfectly aligned.
Now consider a matrix S given by

S =


2 1
1 2

�
(��.�)

��� ���
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�. On the same axes, plot the vectors n and z using MATLAB.

�. Suppose that n and z are transformed by S. On the same axes as in the previous part, plot
the vectors Sn and Sz using MATLAB.

�. Now, we shall see what happens to these vectors under repeated transformations by S. On
the same axes as in the previous part, plot the vectors SSn and SSz using MATLAB.

�. On the same axes as in the previous part, plot the vectors SSSn and SSSz using MATLAB.

�. On the same axes as in the previous part, plot the vectors SSSSn and SSSSz using MATLAB.

�. You should �nd that n is una�ected by the transformation by S, but z on the other hand
moves farther and farther away. In other words, under repeated transformations by S, z grew
further and further apart from his four friends. Explain what you see in terms of eigenvalues
and eigenvectors.

��.� Properties and Applications of Eigenvalues and Eigenvectors

While most of our work on eigenvalues and eigenvectors has focused on �D vectors and 2 ⇥ 2 matrices,
these ideas extend to higher dimensions as well. The eigenvalues and eigenvectors can be found by solving
the characteristic polynomial, or by using the MATLAB eig function.
A few words about eig are in order. The following command

>> [V,D] = eig(A)

will return two matrices. The columns of the matrix V are the eigenvectors. D is a diagonal matrix, with
the eigenvalues on the diagonal. The �rst eigenvector is in the �rst column of V and has a corresponding
eigenvalue in the �rst diagonal entry of D. Each eigenvector is normalized to have a magnitude of �. The
eigenvalues will often "appear" to be sorted according to their size, but this is not necessarily true, and is
simply an artifact of the algorithm used to compute them. See the documentation in MATLAB for more
details.

Consider an n ⇥ n matrix A. The characteristic polynomial will be a polynomial of degree n in �, i.e., it
will have the form

cn�n + · · · + c1� + c0 = 0

where ci are constants. This polynomial will have n roots, although some of those roots might be the same
(e.g., both roots of the polynomial �2 + 2� + 1 = 0 are �1, so we say �1 = �1 and �2 = �1.) This means
that an n ⇥ n matrix has n eigenvalues �1, �2, · · · , �n, where its possible that some eigenvalues are equal.

The following are properties of the eigenvalues (some of these are n-dimensional extensions of what you
already saw for � dimensions).

• Tr(A) = �1 + �2 + · · · + �n

��� ���
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• det(A) = �1�2 · · · �n

• A is invertible if and only if all eigenvalues are nonzero.

• If the eigenvalues are distinct (none are equal) then the corresponding eigenvectors are linearly
independent.

• If a matrix is symmetric, i.e.,A = AT , then its eigenvalues are real and its eigenvectors are orthogonal
to each other.

Exercise ��.�
In this problem, you will get some practice seeing some of the properties above in action. First,
create a 3 ⇥ 3 matrix in MATLAB, with any values you’d like and call it A. Alternatively, you can
ask MATLAB to generate a 3 ⇥ 3 matrix with random entries using A = randn(3, 3);.

�. Use MATLAB’s eig function to get the eigenvalues and eigenvectors of the matrix.

�. Using MATLAB’s trace function, con�rm that the trace equals the sum of the eigenvalues.

�. Using MATLAB’s det function, con�rm that the determinant equals the product of the
eigenvalues, and explain why a square matrix is invertible if and only if all its eigenvalues are
nonzero.

�. Generate a new matrix B = AT A which must be symmetric. Find its eigenvalues and
eigenvectors using eig, and verify that the eigenvectors are orthogonal.

��.� Eigenvalues and Eigenvectors in Data Analysis

In the last class you worked on examples involving correlation matrices. Here we will look at covariance
matrices, which are related to correlation matrices, except that the entries are not normalized by the standard
deviations of the variables. You can think of covariance matrices as measuring the relationship between
random quantities, but without normalization. Thus, information about how small or large these data values
are will still be preserved in the covariance matrix.

Suppose that we have two di�erent data variables x and y (e.g. corresponding to temperatures in Boston
and Sao Paolo), with xi and yi being di�erent values in the data set we can de�ne a a matrix A as follows:

A =
1p

N � 1

0

BBBBB@

x1 � µx y1 � µy

x2 � µx y2 � µy

x3 � µx y3 � µy
...

...
xN � µx yN � µy

1

CCCCCA

��� ���
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where µx is the mean of the �rst column, and N is the number of samples (rows). The covariance matrix
of x and y is R = AT A. You can think of the entries of this matrix as storing the un-normalized
correlations between the temperatures. Because RT = R, this matrix is symmetric, and hence has
orthogonal eigenvectors.
The eigenvectors and eigenvalues of R tell us something about how the data are distributed. The

eigenvector corresponding to the largest eigenvalue of R, which is also called the principal eigenvector of R
points in the direction with the largest variation in the data. The eigenvector corresponding to the second
largest eigenvalue points in the direction orthogonal to the principal eigenvector in which there is the
second largest amount of variation in the data, and so on (if you have more than � dimensional data). The
square-root of the eigenvalues tells you about the amount of variation there is in each of those directions.
Of course when you only have two di�erent variables in the data set, the matrix R has only � orthogonal
eigenvectors.

To illustrate, consider Figure ��.� which shows the centered (mean subtracted) temperatures of Boston vs
Sao Paolo. We have also plotted the two eigenvectors, scaled by the square-root of their corresponding
eigenvalues, to illustrate the relative variation of the data along the directions of the two eigenvectors.
Notice that the principal eigenvector is in the direction of greatest variation in the data. Figure ��.� is a
similar plot with the temperatures of Boston and Washington DC instead.
The proof of this is optional and will be introduced in the future.
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Figure ��.�: Centered average daily temperatures of Boston vs Sao Paolo, with the eigenvectors of the
covariance matrix.
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Figure ��.�: Centered average daily temperatures of Boston vs Washington DC, with the eigenvectors of
the covariance matrix.

Exercise ��.��
In this next problem, we are going to visualize how the eigenvectors of covariance matrices can tell
us about the directions of most variation in �D data. Load the �le temps_bos_sp_dc.mat in
MATLAB. This �le will load �� years of temperature values for Boston, Sao Paolo and Washington
DC. Treat the temperatures of Boston, Sao Paolo, and Washington DC for a given day as a point in
a �D space.

�. Subtract out the mean temperature of each city from the daily temperature data.

�. Make a �D scatter plot of the data points with the means subtracted out. You will �nd
MATLAB’s plot3 function useful. You may wish to use the ’MarkerSize’ argument

��� ���
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for plot3 with a marker size of �.� or less to make the plots clearer.

�. Construct a covariance matrix for the data and compute its eigenvectors.

�. On the same axes, using quiver3, or plot3, plot the eigenvectors scaled by the square-
root of their corresponding eigenvalues. Use grid on to draw grid lines on the axes to
improve your visualization.

�. Using the rotate �D button on the �gure window, rotate the image around to see how the
eigenvectors tell you about the variation in the data.

��.� Diagnostic�iz

Please see Canvas for the quiz questions.
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Solution ��.�

�. First we �nd
A � �I =


2 � � 0

0 �3 � �

�
.

And then we compute the determinant

det(A � �I) = (2 � �)(�3 � �).

Setting this equal to zero produces the characteristic equation,

(2 � �)(�3 � �) = 0

whose roots are, in fact, �1 = 2 and �2 = �3.

�. Here’s a plot of v1,v2,Av1 and Av2:

y

x
v2

Av2

v1

Av1

When the eigenvalue is negative, the eigenvector is reversed in direction and then scaled.

Solution ��.�

�. Since tr(A) = 2 and det(A) = �3, we have

�2 � 2� � 3 = 0

so �1 = �1 and �2 = 3.

�. Since tr(A) = 3 and det(A) = �4, we have

�2 � 3� � 4 = 0

so �1 = �1 and �2 = 4.

��� ���
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Solution ��.�

�.

�1 + �2 =
tr(A) +

p
tr(A)2 � 4det(A)

2
+

tr(A) �
p

tr(A)2 � 4det(A)

2

=
tr(A)

2
+

tr(A)

2
= tr(A)

�.

�1�2 =
⇣ tr(A)

2

⌘2
+
⇣ tr(A)

2

⌘⇣p
tr(A)2 � 4det(A)

⌘

�
⇣ tr(A)

2

⌘⇣p
tr(A)2 � 4det(A)

⌘
�
⇣ptr(A)2 � 4det(A)

2

⌘2

=
tr(A)2

4
� tr(A)2 � 4det(A)

4
= det(A)

�. Symmetric means b = c and real � means:

tr(A)2 � 4det(A) � 0

(a + d)2 � 4(ad � bc) � 0

(a+d)2 � 4(ad� bc) = a2 +d2 +2ad� 4ad+4bc = a2 +d2 � 2ad+4b2 = (a�d)2 +4b2

Squares of real numbers are positive, so tr(A)2 � 4det(A) � 0 and the eigenvalues � are
real.

Solution ��.�
Using the fact that Av = �v, we see that

A(cv) = cAv = c�v = �(cv)

and therefore cv is also an eigenvector.

Solution ��.�
First we compute the left-hand side

Av1 =


18 �2
12 7

� 
1
4

�
=


10
40

�

and the right-hand side

�1v1 = 10


1
4

�
=


10
40

�
.

Fortunately, they are equal.
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Solution ��.�
First we compute

A � �2I =


18 � 15 �2

12 7 � 15

�
=


3 �2
12 �8

�
.

Now, letting v2 =


a
b

�
, we are trying to solve


3 �2
12 �8

� 
a
b

�
=


0
0

�
,

which produces the equations

3a � 2b = 0 and 12a � 8b = 0.

(These equations give the same information since the rows of (A � �2I) are linearly dependent.)

This gives b = 3
2a, so v2 =


a
3
2a

�
for any value of a. Picking a = 2, we have v2 =


2
3

�
.

Solution ��.�

�.
� = 5, 2

and
v =


2
1

�
,


�1
1

�

�.
� = �1, 4

and
v =


�1
1

�
,


2
3

�

Solution ��.�
See Figure ��.�. n is an eigenvector of S with an eigenvalue of �, so it is unchanged by the
transformation S. However, z is not an eigenvector of S, so it changes each time the transformation
S is applied, and the change accelerates as it diverges from the eigenvector n.

��� ���



Fifth Edition ��.�

Figure ��.�: Plot for Exercise �.

Solution ��.�

�. A=randn(3,3);[V,D]=eig(A)

�. trace(A)-sum(diag(D))

�. det(A)-prod(diag(D))
The product of all eigenvalues equals the determinant of the matrix. If any eigenvalue is zero,
the determinant is zero and the matrix is non-invertible; if all eigenvalues are nonzero, the
determinant is nonzero and the matrix is invertible.

�. B=A’*A;[V D]=eig(B);V’*V gives the identity matrix, showing that the eigenvectors
are orthogonal (and of unit length).

Solution ��.��

�. bn=b-mean(b);sn=s-mean(s);wn=w-mean(w);

�. plot3(bn,sn,wn,’.’,’MarkerSize’,0.1)
xlabel(’Boston temperature (mean subtracted)’)

ylabel(’Sao Paolo temperature (mean subtracted)’)

zlabel(’Wash. D.C. temperature (mean subtracted)’
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�. A=1/sqrt(length(b)-1)*[bn,sn,wn];
R=A’*A;

[V,D]=eig(R)

�. plot3(bn,sn,wn,’.’,’MarkerSize’,0.1)
Vs=V.*sqrt(diag(D))

hold on

plot3([0,Vs(1,1)],[0 Vs(2,1)],[0 Vs(3,1)],’LineWidth’,2)

plot3([0,Vs(1,2)],[0 Vs(2,2)],[0 Vs(3,2)],’LineWidth’,2)

plot3([0,Vs(1,3)],[0 Vs(2,3)],[0 Vs(3,3)],’LineWidth’,2)

grid on

axis equal

See Figure ��.�, which has the �rst eigenvector clearly aligned with the direction of greatest
variation.

Figure ��.�: Temperatures and eigenvectors.
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