
Day 3

Version: 2019-12-27

Welcome to Module 3: Introduction to Mobile Robotics
Sensory Motor Loops, Motion of Rigid Bodies
Quantitative Engineering Analysis

Spring 2019

1 Schedule

• 0900-1030: Sensory Motor Loops and Braitenberg Vehicles

• 1030-1045: Coffee

• 1045-1200: Motion of Rigid Bodies

• 1200-1230: Overnight preview and Mathematica refresher

2 Overview

Welcome to Module 3! In this module you’ll be learning some of
the fundamental ideas, concepts, and algorithms that lie at the heart
of robotics. Along the way we’ll be revisiting some mathematical
and analytical concepts we touched upon earlier in the semester.
Not only will we be applying these concepts in new contexts and
to new purposes, but also extending them in important ways. The
module is structured around a series of challenges in which you will
be programming your robot to perform various tasks autonomously.
As you and your robot face tougher and tougher challenges, you will
need to carefully integrate a wider range of techniques in order to
successfully complete the task at hand.

3 What is a Robot?

Figure 1: C-3PO from the Star Wars
franchise.

Figure 2: Johnny Five from the Short
Circuit movies.

Before diving into the challenges, let’s take a step back and look at
some definitions of the word “robot”. Merriam-Webster provides
three definitions of the word.

• a machine that looks like a human being and performs various
complex acts (such as walking or talking) of a human being

• a device that automatically performs complicated often repetitive
tasks

• a mechanism guided by automatic controls

Exercise (1) Jot down a list of devices. For each device, determine which, if
any, of the three definitions of the word “robot” apply.



Day 3

Version: 2019-12-27

These disparate definitions highlight the fact that depending on
who you ask, the answer to the question “what is a robot?” will
likely be very different. In a sense these three definitions proceed
along a continuum of more restrictive to looser definitions, with
the definition “a mechanism guided by automatic controls” being
the loosest. Under this definition many things that you probably
wouldn’t intuitively call “robots” are just that. Take for example a
thermostat. A thermostat is a mechanism that automatically regulates
the heat in a building by comparing the measured temperature with
a “desired” temperature. By the third definition, a thermostat is cer-
tainly a robot. At this point you may be thinking that if something
as simple as a thermostat is a robot, then definition 3 must be com-
pletely bogus. After all, robots are supposed to be complicated and
hard! However, today we will see that robots can in fact be quite sim-
ple. Further, simple robots can do some pretty complicated things.

4 Sensory-Motor Loops

Figure 3: A schematic of a robot con-
trolled by a sensory-motor loop.

We ended our last section on a somewhat cryptic note. If we seek to
design simple robots, how on earth can they do complex things? The
answer to this question lies in the fact that robots are not isolated ma-
chines, but instead interact with a complex and ever-changing world.
A simple model that captures this idea is the sensory-motor loop (see
Figure ??). The model situates the robot within an environment that
it interacts with through two pathways.

The first is a motor pathway by which the robot executes actions
which affect its environment. In our thermostat example these ac-
tions would be turning the heating system on or off. In a more con-
ventional example of a robotic arm in a manufacturing plant, this
could be operating the motors that control the joints of the arm.

The second is a sensory pathway by which the robot perceives its
environment. In our thermostat example this could be a tempera-
ture sensor such as a thermocouple. In the case of a robotic arm in
a manufacturing plant, this could be a potentiometer that measures
the angle of each of the arm’s joints or pressure sensors that measure
contacts between the robot arm and other objects.

The ”brain” of the robot, if you will, is defined by the box labeled
“behavior system”. In the general case you could imagine that the
robot’s brain might integrate multiple pieces of sensory informa-
tion over time to form representations of the world around it. Take
for example a robot mapping a building. The robot could build a
progressively more detailed map by moving around in the building
and collecting sonar readings (which provide an estimate of distance
to objects in the world) over time. Putting aside this more complex



Day 3

Version: 2019-12-27

form, let’s restrict ourselves to robots with fairly simple behavior sys-
tems. What about a robot that has no memory at all? Such a robot
would have to make all of its decisions based on its current sensory
information.

Exercise (2) Design robots using the model in Figure ??. Restrict yourselves
to robots that have no memory (i.e. ones that act at any moment
in time directly based on their sensory input). To help get your
creative juices flowing, it may help to make lists of sensors and
actuators. You can then create interesting ideas by seeing what
would happen if you paired a particular sensor with a particular
actuator in a particular context. Don’t worry too much about try-
ing to design useful robots (whimsical is good), the goal here is
to be creative and to think through the mental simulations neces-
sary to understand how your robot would behave. Here are some
suggestions for sensors and actuators.

Sensors: vibration sensor, microphone, camera, thermal camera,
wheel rotation sensor, pressure sensor, light intensity sensor, laser
range sensor, bump detector, temperature sensor, breathalyzer, etc.
(Wikipedia has a good list).

Actuators: DC motors, combustion engines, stepper motors,
solenoids, speakers, laser beams, LEDs, etc.

5 Grey Walter’s Tortoises

Figure 4: Gray Walter’s Tortoise Elsie

Two very early examples of electric robots that worked using the
principle of sensory-motor mappings were Grey Walter’s robotic
“Tortoises” Elmer and Elsie (see Figure ??). This YouTube video
probably tells the story better than we possibly could.

As Grey Walter said himself, the robots behave as if they had a
very simple two-cell nervous system that specifies the sensory-motor
mapping (or behavior system). Despite this striking simplicity, the
robots are capable of complex behavior such as obstacle avoidance
and phototaxis (navigating towards the light that marks the charging
kennel). This is an example of what we’ve been alluding to several
times in this document: simple sensory-motor mappings can lead to
complex behavior when put into a complex environment.

6 Braitenberg Vehicles

The pioneering work of Grey Walter was followed up by a number of
others. One particularly interesting work was by Valentino Braiten-
berg. Valentino Braitenberg was interested in how vehicles controlled
by very simple sensory-motor loops could execute behaviors that

https://en.wikipedia.org/wiki/List_of_sensors
https://www.youtube.com/watch?v=lLULRlmXkKo


Day 3

Version: 2019-12-27

when viewed by humans would cause them to ascribe emotion and
feelings of intelligence and intentionality to these vehicles. The name
typically used to refer to these hypothetical robots is “Braitenberg Ve-
hicles”. While Braitenberg never actually built these vehicles (he was
more interested in how these simple vehicles might inform various
philosophical issues, particularly in the area of philosophy of mind),
others have followed up and actually built these vehicles. Here is a
video from a group at MIT that built several of Braitenberg’s vehicles.

VL (left wheel 
velocity)

Whisker 
contact sensor

Light sensor

Light sensor
(alternate position)VR (right wheel 

velocity)

Front Bump 
Sensor

Rear Bump 
Sensor

Figure 5: A schematic of the vehicle
from the real-life Braitenberg vehicles
video. The robot is a differential drive
vehicle with two wheels. We use VL and
VR to refer to the velocities of the left
and right wheels (positive is forward by
convention). Also labeled are the other
sensors on the robot, including the light
sensor that reads higher values when
exposed to more light, a whisker sensor
that reads 0 when it is not in contact
with something and 1 if it is, and two
bump sensors that read 1 when they hit
something and 0 otherwise.

A schematic of the vehicle (or robot) in the video is shown in Fig-
ure ??. The robot has two motors that each control one of the robot’s
wheels. We can use the symbols VL and VR to refer to the velocities
of each of the wheels (positive indicating a forward velocity). Using
the framework from the previous section, these are our actuators. The
robot also has a number of sensors. A light sensor outputs a contin-
uous value which reads out larger values when in the presence of
bright light and smaller values in the presence of low light (this is
basically a one-pixel camera!). Additionally the robot has two bump
sensors that have binary outputs. That is, they output 1 when they
strike an object and 0 otherwise. Finally, the robot has a whisker sen-
sor that is also binary and outputs a 1 when it contacts something
and 0 otherwise.

Before getting on to the task of figuring out how one might pro-
gram a robot like this, we need to understand a bit about how the
drive systems of these robots work. The configuration shown in Fig-
ure ?? is known as differential drive. We will be thinking much more
systematically about differential drive in the first robot challenge, but
for now let’s try to understand it from a qualitative perspective.

Exercise (3) To build a qualitative understanding of differential drive it helps
to understand a few limiting cases. Good ones to start with are
ones that involve the wheels moving at equal speeds in either
the forward (positive) or reverse (negative) direction. In these
cases the robot will either move forward in a straight line or back-
wards in a straight line. In these cases the speed of the robot is
directly proportional to the speed of its wheels. Now, let’s con-
sider cases where the velocities of the two wheels are unequal. To
help you with your intuition it might help to imagine the right
wheel pulling either forwards or backwards on the right side of
the robot and the left wheel pulling either forwards or backwards
on the left side of the robot. Here is a potential list of limiting
cases to consider. Make predictions about what would happen in
these cases. It may help to sketch a couple of key frames (poses of
the robot) over time.

(a) What if VL is positive and VR = −VL?

https://www.youtube.com/watch?v=VWeRC6j0fW4
https://www.youtube.com/watch?v=VWeRC6j0fW4
https://www.youtube.com/watch?v=VWeRC6j0fW4
https://www.youtube.com/watch?v=VWeRC6j0fW4


Day 3

Version: 2019-12-27

(b) What if VR is positive and VL = −VR?

(c) What if VL = 0 and VR is positive?

(d) What if VR = 0 and VL is positive?

(e) What if VL = 0 and VR is negative?

(f) What if VR = 0 and VL is negative?

(g) What if VR is positive and VL = 1
2 VR?

(h) What if VL is positive and VR = 1
2 VL?

7 Programming a Robot on a Whiteboard

Next, you will be programming this vehicle to perform the behaviors
you saw in the video. However, instead of programming the robot
using a computer, you will be programming it at the whiteboard.
How can you program using a whiteboard (we imagine you conve-
niently might ask)?!? Remember, we are thinking of our robot’s brain
as a sensory-motor mapping. Translated into the language of math-
ematics this simply means that our robot program is specified by a
function from sensors to motors!

There are many ways to represent a function. One way is as an
equation. For instance, a robot that moves faster and faster as it see
more and more light could have VL(`) = `2 and VR(`) = `2 (where
` is the intensity of the light measured by the light sensor). Another
way to represent a function is to define it graphically. You could
draw a function that has ` on the x-axis and VL on the y-axis. You
could then sketch the relationship between those two quantities.
Doing this graphically you could either have a quantitatively accurate
sketch or a sketch that simply characterizes the qualitative behavior
of the function. For sensors that have binary values, like the bump
sensors, you can exhaustively enumerate all conditions. For instance,
here is the program of a robot that drives forward at a 0.5 m

s until it
rams into something

VL(bumpF) =

0.5 m
s , bumpF = 0

0 m
s , bumpF = 1

VR(bumpF) =

0.5 m
s , bumpF = 0

0 m
s , bumpF = 1

where bumpF is the value of the forward bump sensor (1 when in
contact with something, 0 otherwise).

Exercise (4) Work through generating robot programs to realize the behaviors
in the video. Questions and considerations to keep in mind while
doing this activity are:



Day 3

Version: 2019-12-27

(a) In order to validate your proposed program, it helps to do a
quick whiteboard simulation. Sketch out a few key instants in
time, what the robot’s sensors would read, and what the wheel
velocities would be.

(b) At least one of the behaviors cannot be reproduced without
some primitive form of memory (although perhaps if you are
very creative it can work). Which behaviors are these? How can
you tell?

Next, Imagine your robot can remember a small amount of infor-
mation. Specifically, your robot has access to a single flag that starts
out with the value 0. Its value can be toggled from 0 to 1 or from 1

to 0 when a particular event occurs. For instance, if the light sensor
reads a certain value, the robot might toggle its flag. The value of
the flag can then inform the behavior of the robot. Given this new
capability, implement any behaviors in the video that you couldn’t
before.

If you get done earlier than other groups, consider adding an ad-
ditional light sensor to your robot. Now that you have two light sen-
sors, you can get the robot to do a richer set of behaviors. Sketch the
configuration of sensors on your new Braitenberg vehicle (equipped
with two light sensors). Try to reproduce behaviors such as light
seeking and light avoiding. For more ideas see the Wikipedia page on
Braitenberg vehicles.

8 Coffee [15 minutes]

9 The Motion of Rigid Bodies [75 mins]

We are going to explore the concept of angular velocity using an
"app" for your phone. Please download and install "SensorKinetics"
to your phone, and open the "Gyroscope sensor".

Exercise (5) Qualitative: For each of the questions below, you should "plot" the
data on the board, and interpret the data qualitatively in terms of
the coordinate system of the phone.

(a) Place your phone on the table and spin it, in place, counter-
clockwise. Note that you should be spinning it about an axis
that is orthogonal to the face of the phone. Which axis is this on
the data graph? What happens if you spin it clockwise?

(b) Now spin the phone about the two other axes. Which axis is
which? Which direction is clockwise and which is counterclock-
wise? Clearly draw the coordinate system the phone is using -
use the unit vectors x̂, ŷ, and ẑ.

https://en.wikipedia.org/wiki/Braitenberg_vehicle
https://en.wikipedia.org/wiki/Braitenberg_vehicle


Day 3

Version: 2019-12-27

(c) What happens if you move the phone along a straight line (on
the table) without turning the phone?

(d) What happens if you move the phone uniformly in a circle
without turning the phone? i.e. the orientation of the phone
does not change.

(e) What happens if you move the phone uniformly in a circle
while turning the phone at the same time? i.e. imagine the
phone is a car and you are driving in a circle.

Now that we’ve explored angular velocity using the phone, let’s
make it quantitative. We will use the following notation for the angu-
lar velocity

ω = ωxx̂ + ωyŷ + ωzẑ

so that ωx is the component of angular velocity corresponding to
rotation about the x-axis and so on. The units of angular velocity are
in radians per second, e.g., rotating in a complete circle in one second
would be a 2π radian/second rotation.

Exercise (6) Quantitative: For each of the questions below, you should "plot"
the data on the board, and interpret the data quantitatively in
terms of the coordinate system of the phone.

(a) Predict the angular velocity if you place the phone down on the
table and then spin the phone in place so that it spins once in 5

seconds. Confirm your prediction using the data.

(b) Predict the angular velocity if you uniformly move the phone
in a circle in 5 seconds, and confirm your prediction using the
data. Does it matter how large the circle is?

(c) What type of motion would give rise to a constant ωz of 2 radi-
ans per second for 5 seconds, with both ωx = 0 and ωy = 0?
Confirm your prediction with the phone.

(d) What type of motion would give rise to a sinusoidal ωz with
amplitude of 2 radians per second, and a period of 10 seconds,
with both ωx = 0 and ωy = 0.

(e) What type of motion would give rise to a constant ωz and ωx of
2 radians per second for 5 seconds, with ωy = 0. Confirm your
prediction with your phone.

(f) Sketch a graph of your own choosing of ωx, ωy, and ωz and
challenge yourself to produce it using the phone!

Hopefully we have a qualitative and quantitative sense for angular
velocity now. The angular velocity is a vector with magnitude and
direction. We’ve seen that the direction is the axis of rotation (and



Day 3

Version: 2019-12-27

counterclockwise is positive), and the magnitude is defined as the
rate of change of the angle in rad/s. For example, if we use θx to
represent the angle of rotation about the x-axis, then the x-component
of the angular velocity is

ωx =
dθx

dt
Although the literature tends to use different Greek letters to repre-
sent the different angles of rotation in 3D, we will use θx, θy, and θz

for simplicity.
Since the angular velocity is the time derivative of the angle, the

angle must therefore be determined by the integral of the angular
velocity

θx(t) = θx(0) +
∫ t

0
ωx(t) dt

where θx(0) is the initial angle at t = 0. In the case where the angular
velocity is constant the integral gives

θx(t) = θx(0) + ωxt

which means that the angle increases linearity in time as expected -
that rate of increase is just the angular velocity. If the angular veloc-
ity is not constant, we need to integrate it in time to determine the
angle.

Exercise (7) Mathematical: For each of the following questions you should
carry out the relevant integral, and think about the motion of the
phone.

(a) Determine θz(t) if ωz(t) = 2 radians per second. Describe the
motion of the phone in this case.

(b) Determine θz(t) if ωz(t) = αt radians per second. Describe the
motion of the phone in this case.

(c) Determine θz(t) if ωz(t) = sin(αt) radians per second. Describe
the motion of the phone in this case.

We will finish this exploration by connecting back to rotation
matrices from earlier in this module. We will now use MATLAB
to define a set of unit vectors corresponding to the coordinate system
of the phone, and we will use rotation matrices to rotate these unit
vectors.

Exercise (8) Look up and write down the rotation matrices for 3D rotations -
use θx, θy, and θz for the angles.

Exercise (9) In MATLAB, define a set of unit vectors x̂, ŷ, and ẑ in 3D. For
example,



Day 3

Version: 2019-12-27

>> xhat = [1;0;0]

Use "quiver3" to plot these unit vectors in 3D with the origin at
(0, 0, 0). Now choose a specific rotation angle about each of the
axes in turn, transform the vectors by multiplying with the ro-
tation matrix, and use "quiver3" to visualize the new vectors to
confirm the rotation matrix does what you expected.

Exercise (10) Now write a "for" loop that rotates the unit vectors in 3D for the
following scenarios so that you can produce an animation - you
will need to issue the "drawnow" command so that the graphic
updates every time you issue the quiver3 command.

(a) ωz = 2 radians per second, and ωx = ωy = 0.

(b) ωx = 2 radians per second, and ωy = ωz = 0.

(c) ωy = 2 radians per second, and ωx = ωz = 0.

(d) ωz = ωx = 2 radians per second, and ωy = 0.

(e) ωz = 2t radians per second, and ωx = ωy = 0.

(f) ωz = sin(2t) radians per second, and ωx = ωy = 0.

Exercise (11) Challenge (if you have time) Record some data with the phone,
upload it to MATLAB, and try to produce an animation of the unit
vectors identical to the motion of the phone.

10 Overnight preview and Mathematica refresher [30 mins]


